Sampling Uniformly from the Unit Simplex

Noah A. Smith and Roy W. Tromble Department of Computer Science / Center for Language and Speech Processing Johns Hopkins University {nasmith, royt}@cs.jhu.edu

August 2004

Abstract

We address the problem of selecting a point from a unit simplex, uniformly at random. This problem is important, for instance, when random multinomial probability distributions are required. We show that a previously proposed algorithm is incorrect, and demonstrate a corrected algorithm.

1 Introduction

Suppose we wish to select a multinomial distribution over n events, and we wish to do so uniformly across the space of such distributions. Such a distribution is characterized by a vector $\vec{p} \in \mathbb{R}^n$ such that

$$\sum_{i=1}^{n} p_i = 1 \tag{1}$$

and

$$p_i \ge 0, \forall i \in \{1, 2, ..., n\}$$
(2)

In practice, of course, we cannot sample from \mathbb{R}^n or even an interval in \mathbb{R} ; computers have only finite precision. One familiar technique for random generation in real intervals is to select a random integer and normalize it within the desired interval. This easily solves the problem when n = 2; select an integer x uniformly from among $\{0, 1, 2, ..., M\}$ (where M is, perhaps, the largest integer that can be represented), and then let $p_1 = \frac{x}{M}$ and $p_2 = 1 - \frac{x}{M}$.

What does it mean to sample uniformly under this kind of scheme? There are clearly M + 1 discrete distributions from which we sample, each corresponding to a choice of x. If we sample x uniformly from $\{0, 1, ..., M\}$, then then we have equal probability of choosing any of these M + 1 distributions.

Our goal is to generalize this technique for arbitrary n, maintaining the property that each possible distribution—i.e., those that are possible where we normalize by M so that every p_i is some multiple of $\frac{1}{M}$ —gets equal probability.

Figure 1: Obvious non-uniformity of sampling in the n = 3 case of the first naïve algorithm. The points are (p_1, p_2) ; p_3 need not be shown. 20,000 points were sampled.

2 Naïve Algorithms

One naïve algorithm is as follows.¹ Select a sequence $a_1, a_2, ..., a_{n-1}$, each uniformly at random from [0, 1]. Let

$$p_i = a_i \prod j = 1^{i-1} (1 - a_j), \forall i = \{1, 2, \dots n - 1\}$$
(3)

and let $p_n = 1 - \sum_{i=1}^{n-1} p_i$. This is certainly a generalization of the n = 2 algorithm, but a simple experiment shows that the sampling is not uniform (see Figure 1).

It is worth pointing out also that this algorithm differs from the set-up described in the introduction, where each p_i is a multiple of $\frac{1}{M}$. If each a_i were chosen by sampling from $\{0, 1, ..., M\}$, then we would have p_i be a multiple of $\frac{1}{M^i}$, which suggests a priori that there is non-uniformity in the sampling (each p_i comes from a different domain).

A second naïve algorithm (also due to Weisstein) is to sample $a_1, a_2, ..., a_n$ each from [0, 1] uniformly (using the given procedure) and then normalize them. This is also incorrect (see Figure 2), though the points will all be multiples of $\frac{1}{M\sum_{i=1}^{n} x_i}$ (where $p_i = \frac{x_i}{M}$).

3 Hypercube Method

Weisstein goes on to suggest a kind of importance sampling, where points are picked uniformly from a wider region for which uniform sampling can be done straightforwardly.² If the point happens to

¹Eric W. Weisstein. "Triangle Point Picking." From *MathWorld—A Wolfram Web Resource*. http://mathworld.wolfram.com/TrianglePointPicking.html.

²Weisstein's article deals with picking a point in an arbitrary triangle; he uses an enclosing quadrilateral.

Figure 2: Obvious non-uniformity of sampling in the n = 3 case of the second naïve algorithm. The points are (p_1, p_2) ; p_3 need not be shown. 20,000 points were sampled.

fall outside the desired simplex, they can either be dropped or transformed via a function whose range is the simplex. This method is correct for the triangle point picking problem, where the transformation reflects a point across the side of the triangle that is internal to the quadrilateral.

Note that sampling uniformly from the unit simplex in \mathbb{R}^n is equivalent to sampling uniformly from the set in \mathbb{R}^{n-1} such that

$$\sum_{i=1}^{n-1} p_i \le 1 \tag{4}$$

We can then choose $p_n = 1 - \sum_{i=1}^{n-1} p_i$. Note that this new simplex (call it \mathbb{S}^{n-1}) is a subset of the unit hypercube in \mathbb{R}^{n-1} .

So we could sample each $p_i, \forall i \in \{1, 2, ..., n-1\}$ from [0, 1] (i.e., sample uniformly from the unit hypercube). If $\sum_{i=1}^{n-1} > 1$, then we either reject the sample and try again, or transform it back into \mathbb{S}^{n-1}

Rejection will become intractable as n increases, because the number of points in \mathbb{S}^{n-1} as a fraction of the number of points in the \mathbb{R}^{n-1} hypercube shrinks exponentially in n.

The question we seek to answer is, does there exist a transformation on points in the unit hypercube that maps evenly across \mathbb{S}^{n-1} ? The next section describes a proposed mapping, and shows how it is not equivalent to uniform sampling. We then go on to give a mapping that is.

4 Kraemer Algorithm

The following algorithm is the only one we were able to find proposed for this problem.³ First, select $x_1, x_2, ..., x_{n-1}$ each uniformly at random from $\{0, 1, ..., M\}$. Next, sort the x_i in place. Let $x_0 = 0$ and $x_n = M$. Now we have

$$0 = x_1 \le x_2 \le x_3 \le \dots \le x_{n-1} \le x_n = M \tag{5}$$

Let $y_i = x_i - x_{i-1}, \forall i \in \{1, 2, ..., n\}$. Now \vec{y} will have the property that $\sum_{i=1}^n y_i = M$. Dividing by M will give a point in the unit simplex.

4.1 Incorrectness Proof

Under our assumption that we generate random reals from random integers, the above algorithm can be viewed as choosing n-1 random integers and then deterministically mapping that vector to a vector of n integers that sum to M. By normalizing, we get a point in the unit simplex.

The mapping is a function f from a discrete set of $(M+1)^{n-1}$ elements to a set of fewer elements (the set of points in the unit simplex where all coordinates are multiples of $\frac{1}{M}$). Call the range of $f \mathbb{T}^n$. For the sampling to be uniform across \mathbb{T}^n , we must verify that the $(M+1)^{n-1}$ elements in the domain are equally distributed among all elements of \mathbb{T}^n . I.e.,

$$\left|\left\{\vec{x}: \vec{x} \in \{0, 1, ..., M\}^{n-1}, f(\vec{x}) = \vec{y}\right\}\right| = \frac{(M+1)^{n-1}}{|\mathbb{T}^n|} \tag{6}$$

Suppose that we choose \vec{x} and all elements are distinct and do not include 0 or M. How many $\vec{x'}$ will map to $f(\vec{x})$? The answer is that we must choose exactly the same set of coordinates of \vec{x} , but in any order. The number of $\vec{x'}$ that are permutations of \vec{x} , where all elements of \vec{x} are distinct, is (n-1)!. So the number of elements mapping to any $\vec{y} \in \mathbb{T}^n$ should be (n-1)!.

Now consider \vec{x} where two elements are identical. (This will result in a single p_i , apart from p_0 and p_n , begin zero.) How many $\vec{x'}$ will map to $f(\vec{x})$? The answer is of course the number of distinct permutations of \vec{x} , of which there are $\frac{(n-1)!}{2}$.

Generally speaking, the more zeroes present in a given \vec{y} , the lower the probability alloted to it under this sampling scheme. (There is a minor asymmetry about this; zeroes in the first and last positions of \vec{y} do not cost anything.)

4.2 A Modification

If we are willing to eliminate all zeroes from the vector $\vec{y} \in \mathbb{T}^n$, a simple algorithm presents itself. Sample $x_1, ..., x_{n-1}$ uniformly at random from $\{1, 2, ..., M - 1\}$ without replacement (i.e., choose n-1 distinct values). Let $x_0 = 0, x_n = M$. Let $y_i = x_i - x_{i-1}, \forall i \in \{1, 2, ..., n\}$.

Because each \vec{x} contains all unique entries, we know that the equivalence classes mapping to the same $f(\vec{x})$ each contain exactly (n-1)! vectors. So the sampling is uniform across distributions that have full support and where all p_i are multiples of $\frac{1}{M}$.

4.3 Allowing Zeroes

To equally distribute to the cases where some y_i are zero, as well, apply the above, no-zeroes algorithm with n' = n, M' = M + n. Then let $y_i = \langle f(\vec{x}) \rangle_i \vec{y} - 1$. Divide by M to normalize.

³This is due to Horst Kraemer's posting on the MathForum on December 20, 1999. http://mathforum.org/epigone/sci.stat.math/quulswikherm/385e91a8.87536387@news.btx.dtag.de.

4.4 Computational requirements

We assume that picking a random integer in $\{1, 2, ..., M + n\}$ is a constant-time operation. We also assume that a perfect hash function is available to ensure that no two coordinates of \vec{x} are equal. Because we might choose a value already chosen, sampling might require more than 1 pick per x_i .

Suppose we are picking x_i . We have already selected $x_1, x_2, ..., x_{i-1}$. If we do importance sampling (i.e., pick x_i from $\{1, 2, ..., M + n - 1\}$ and repeatedly reject until $x_i \notin \{x_1, x_2, ..., x_{i-1}\}$), then the expected runtime for generating x_i is given by r_i , where

$$r_i = \underbrace{\frac{M+n-i}{M+n-1} \cdot 1}_{\substack{i=1\\ M+n-1}} + \underbrace{\frac{i-1}{M+n-1} (r_i+1)}_{\substack{i=1\\ M+n-1}}$$
(7)

pick a novel value on the first try fail and try again

$$= \frac{M+n-1}{M+n-i} \tag{8}$$

Summing over all i, we have a total expected time for sampling at:

$$\sum_{i=1}^{n-1} \frac{M+n-1}{M+n-i}$$
(9)

$$= (M+n-1)\sum_{i=1}^{n-1} \frac{1}{M+n-i}$$
(10)

$$= (M+n-1)(H_{M+1}-H_{M+n})$$
(11)

Using bounds given by Young,⁴ we can set the expected runtime for the sampling stage to be less than

$$(M+n-1)\left(\frac{1}{2(M+1)} - \frac{1}{2(M+n-1)} + \ln\left(\frac{M+1}{M+n}\right)\right) = O(n)$$
(13)

The sorting step can be done in $O(n \log n)$ steps. Overall runtime is therefore expected to be $O(n \log n)$.

The algorithm requires O(n) space.

5 Conclusion

We have shown how triangle point picking algorithms do not generalize to uniform sampling from the unit simplex. We have discussed a previously proposed algorithm for this problem and demonstrated that it is incorrect. We have proposed an $O(n \log n)$ expected runtime, O(n) space algorithm and demonstrated its correctness.

$$\frac{1}{2(n+1)} + \ln n + \gamma < H_n < \frac{1}{2n} + \ln n + \gamma$$
(12)

⁴Young, R. M. "Euler's Constant." *Math. Gaz.* 75, 187–190, 1991. See also http://mathworld.wolfram.com/HarmonicNumber.html.

Figure 3: Our algorithm, n = 3. The points are (p_1, p_2) ; p_3 need not be shown. 20,000 points were sampled.