
Sampling Uniformly from the Unit Simplex

Noah A. Smith and Roy W. Tromble
Department of Computer Science /

Center for Language and Speech Processing
Johns Hopkins University

{nasmith, royt}@cs.jhu.edu

August 2004

Abstract

We address the problem of selecting a point from a unit simplex, uniformly at random.
This problem is important, for instance, when random multinomial probability distributions
are required. We show that a previously proposed algorithm is incorrect, and demonstrate a
corrected algorithm.

1 Introduction

Suppose we wish to select a multinomial distribution over n events, and we wish to do so uniformly
across the space of such distributions. Such a distribution is characterized by a vector ~p ∈ Rn such
that

n∑
i=1

pi = 1 (1)

and
pi ≥ 0,∀i ∈ {1, 2, ..., n} (2)

In practice, of course, we cannot sample from Rn or even an interval in R; computers have only
finite precision. One familiar technique for random generation in real intervals is to select a random
integer and normalize it within the desired interval. This easily solves the problem when n = 2;
select an integer x uniformly from among {0, 1, 2, ...,M} (where M is, perhaps, the largest integer
that can be represented), and then let p1 = x

M and p2 = 1 − x
M .

What does it mean to sample uniformly under this kind of scheme? There are clearly M + 1
discrete distributions from which we sample, each corresponding to a choice of x. If we sample x
uniformly from {0, 1, ...,M}, then then we have equal probability of choosing any of these M + 1
distributions.

Our goal is to generalize this technique for arbitrary n, maintaining the property that each
possible distribution—i.e., those that are possible where we normalize by M so that every pi is
some multiple of 1

M —gets equal probability.

1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1: Obvious non-uniformity of sampling in the n = 3 case of the first näıve algorithm. The
points are (p1, p2); p3 need not be shown. 20,000 points were sampled.

2 Näıve Algorithms

One näıve algorithm is as follows.1 Select a sequence a1, a2, ...an−1, each uniformly at random from
[0, 1]. Let

pi = ai

∏
j = 1i−1(1 − aj),∀i = {1, 2, ...n − 1} (3)

and let pn = 1 −
∑n−1

i=1 pi. This is certainly a generalization of the n = 2 algorithm, but a simple
experiment shows that the sampling is not uniform (see Figure 1).

It is worth pointing out also that this algorithm differs from the set-up described in the intro-
duction, where each pi is a multiple of 1

M . If each ai were chosen by sampling from {0, 1, ...,M},
then we would have pi be a multiple of 1

M i , which suggests a priori that there is non-uniformity in
the sampling (each pi comes from a different domain).

A second näıve algorithm (also due to Weisstein) is to sample a1, a2, ..., an each from [0, 1]
uniformly (using the given procedure) and then normalize them. This is also incorrect (see Figure 2),
though the points will all be multiples of 1

M
∑n

i=1 xi
(where pi = xi

M).

3 Hypercube Method

Weisstein goes on to suggest a kind of importance sampling, where points are picked uniformly from
a wider region for which uniform sampling can be done straightforwardly.2 If the point happens to

1Eric W. Weisstein. ”Triangle Point Picking.” From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/TrianglePointPicking.html.

2Weisstein’s article deals with picking a point in an arbitrary triangle; he uses an enclosing quadrilateral.

2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2: Obvious non-uniformity of sampling in the n = 3 case of the second näıve algorithm.
The points are (p1, p2); p3 need not be shown. 20,000 points were sampled.

fall outside the desired simplex, they can either be dropped or transformed via a function whose
range is the simplex. This method is correct for the triangle point picking problem, where the
transformation reflects a point across the side of the triangle that is internal to the quadrilateral.

Note that sampling uniformly from the unit simplex in Rn is equivalent to sampling uniformly
from the set in Rn−1 such that

n−1∑
i=1

pi ≤ 1 (4)

We can then choose pn = 1 −
∑n−1

i=1 pi.
Note that this new simplex (call it Sn−1) is a subset of the unit hypercube in Rn−1.
So we could sample each pi,∀i ∈ {1, 2, ..., n−1} from [0, 1] (i.e., sample uniformly from the unit

hypercube). If
∑n−1

i=1 > 1, then we either reject the sample and try again, or transform it back into
Sn−1.

Rejection will become intractable as n increases, because the number of points in Sn−1 as a
fraction of the number of points in the Rn−1 hypercube shrinks exponentially in n.

The question we seek to answer is, does there exist a transformation on points in the unit
hypercube that maps evenly across Sn−1? The next section describes a proposed mapping, and
shows how it is not equivalent to uniform sampling. We then go on to give a mapping that is.

3

4 Kraemer Algorithm

The following algorithm is the only one we were able to find proposed for this problem.3 First,
select x1, x2, ..., xn−1 each uniformly at random from {0, 1, ...,M}. Next, sort the xi in place. Let
x0 = 0 and xn = M . Now we have

0 = x1 ≤ x2 ≤ x3 ≤ ... ≤ xn−1 ≤ xn = M (5)

Let yi = xi − xi−1,∀i ∈ {1, 2, ..., n}. Now ~y will have the property that
∑n

i=1 yi = M . Dividing by
M will give a point in the unit simplex.

4.1 Incorrectness Proof

Under our assumption that we generate random reals from random integers, the above algorithm
can be viewed as choosing n − 1 random integers and then deterministically mapping that vector
to a vector of n integers that sum to M . By normalizing, we get a point in the unit simplex.

The mapping is a function f from a discrete set of (M + 1)n−1 elements to a set of fewer
elements (the set of points in the unit simplex where all coordinates are multiples of 1

M). Call the
range of f Tn. For the sampling to be uniform across Tn, we must verify that the (M + 1)n−1

elements in the domain are equally distributed among all elements of Tn. I.e.,

∣∣{~x : ~x ∈ {0, 1, ...,M}n−1, f(~x) = ~y
}∣∣ =

(M + 1)n−1

|Tn|
(6)

Suppose that we choose ~x and all elements are distinct and do not include 0 or M . How many
~x′ will map to f(~x)? The answer is that we must choose exactly the same set of coordinates of ~x,
but in any order. The number of ~x′ that are permutations of ~x, where all elements of ~x are distinct,
is (n − 1)!. So the number of elements mapping to any ~y ∈ Tn should be (n − 1)!.

Now consider ~x where two elements are identical. (This will result in a single pi, apart from
p0 and pn, begin zero.) How many ~x′ will map to f(~x)? The answer is of course the number of
distinct permutations of ~x, of which there are (n−1)!

2 .
Generally speaking, the more zeroes present in a given ~y, the lower the probability alloted to it

under this sampling scheme. (There is a minor asymmetry about this; zeroes in the first and last
positions of ~y do not cost anything.)

4.2 A Modification

If we are willing to eliminate all zeroes from the vector ~y ∈ Tn, a simple algorithm presents itself.
Sample x1, ..., xn−1 uniformly at random from {1, 2, ...,M − 1} without replacement (i.e., choose
n − 1 distinct values). Let x0 = 0, xn = M . Let yi = xi − xi−1,∀i ∈ {1, 2, ..., n}.

Because each ~x contains all unique entries, we know that the equivalence classes mapping to
the same f(~x) each contain exactly (n−1)! vectors. So the sampling is uniform across distributions
that have full support and where all pi are multiples of 1

M .

4.3 Allowing Zeroes

To equally distribute to the cases where some yi are zero, as well, apply the above, no-zeroes
algorithm with n′ = n, M ′ = M + n. Then let yi = 〈f(~x)〉i ~y − 1. Divide by M to normalize.

3This is due to Horst Kraemer’s posting on the MathForum on December 20, 1999.
http://mathforum.org/epigone/sci.stat.math/quulswikherm/385e91a8.87536387@news.btx.dtag.de.

4

4.4 Computational requirements

We assume that picking a random integer in {1, 2, ...,M +n} is a constant-time operation. We also
assume that a perfect hash function is available to ensure that no two coordinates of ~x are equal.
Because we might choose a value already chosen, sampling might require more than 1 pick per xi.

Suppose we are picking xi. We have already selected x1, x2, ..., xi−1. If we do importance
sampling (i.e., pick xi from {1, 2, ...,M + n− 1} and repeatedly reject until xi 6∈ {x1, x2, ..., xi−1}),
then the expected runtime for generating xi is given by ri, where

ri =
M + n − i

M + n − 1
· 1︸ ︷︷ ︸

pick a novel value on the first try

+
i − 1

M + n − 1
(ri + 1)︸ ︷︷ ︸

fail and try again

(7)

=
M + n − 1
M + n − i

(8)

Summing over all i, we have a total expected time for sampling at:

n−1∑
i=1

M + n − 1
M + n − i

(9)

= (M + n − 1)
n−1∑
i=1

1
M + n − i

(10)

= (M + n − 1)(HM+1 − HM+n) (11)

Using bounds given by Young,4 we can set the expected runtime for the sampling stage to be less
than

(M + n − 1)
(

1
2(M + 1)

− 1
2(M + n − 1)

+ ln
(

M + 1
M + n

))
= O(n) (13)

The sorting step can be done in O(n log n) steps. Overall runtime is therefore expected to be
O(n log n).

The algorithm requires O(n) space.

5 Conclusion

We have shown how triangle point picking algorithms do not generalize to uniform sampling from the
unit simplex. We have discussed a previously proposed algorithm for this problem and demonstrated
that it is incorrect. We have proposed an O(n log n) expected runtime, O(n) space algorithm and
demonstrated its correctness.

4Young, R. M. ”Euler’s Constant.” Math. Gaz. 75, 187–190, 1991. See also
http://mathworld.wolfram.com/HarmonicNumber.html.

1

2(n + 1)
+ ln n + γ < Hn <

1

2n
+ ln n + γ (12)

5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: Our algorithm, n = 3. The points are (p1, p2); p3 need not be shown. 20,000 points were
sampled.

6

