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Abstract

This paper outlines an experiential approach to teaching
stochastic local search. Using theTale of the Drunken Topog-
rapher as a running analogy, students are led from the im-
plementation of a hill descent algorithm through small, moti-
vated modifications to a simple implementation of simulated
annealing. Supplementary applets allow students to experi-
ment with temperature and gain understanding of its impor-
tance in the annealing process. Challenge problems complete
this brief but rich introduction to stochastic local search.

Introduction
Our approach to teaching the core concepts of stochastic lo-
cal search is largely experiential and assumes an interactive
lab teaching environment. This approach may, of course, be
customized to a variety of teaching environments. If it is
not possible to present this material in an interactive lab set-
ting, one might provide a lab manual which, like this paper,
guides the student through independent discovery.

The following is an outline of an approach that has been
successfully used in several iterations of introductory artifi-
cial intelligence courses:

• Define the stochastic local search problem.

• Introduce and explain a programming abstraction of the
problem, using simple examples.

• As a class, develop an algorithm for hill descent.

• Test hill descent with the given example problems to wit-
ness local minima.

• Add to hill descent a fixed probability of accepting an up-
hill step and continue experimentation varying this accep-
tance rate.

• Copy this randomized hill descent implementation and
modify it to perform simulated annealing, introducing
concepts and terminology.

• Experiment with applets to see the impact of the annealing
schedule.

• Offer a set of simple challenge problems, allowing stu-
dents a choice of optimization projects.
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We elaborate on these steps in the following sections. Rel-
evant code, problem descriptions, and a sample syllabus can
be found at our website for stochastic local search teach-
ing resources1. One can, of course, base an entire course
on stochastic local search. A suitable text, (Hoos & Stützle
2005) has recently been published.

Defining the Problem
The goal of stochastic local search is to seek astatefrom
a set of statesS that optimizes some measure. We call this
measure the state’senergy, denotede : S → R, and we seek
a state withminimalenergy. Our task is then to seek states
minimizing e(s), that is,arg mins∈S e(s). In practice, it is
often the case that we are only able to find an approximately
optimal state. For each state, there is a neighborhoodN(s)
which defines those states we may look to next afters in our
search. We choose a successor state fromN(s) (which is
in some sense “local” tos) stochastically. We call such a
searchstochastic local search.

It is both important to give a clear formal definition of the
problemand to provide the student with an intuitive visual
analogy to aid understanding. With a visual aid such as a
small warped square of egg crate foam (or some other suit-
able bumpy surface with many local minima), our favorite
approach is to tellThe Tale of the Drunken Topographer:

Once upon a time there was a drunken topographer.
One night, after too many drinks, he became obsessed
with the idea of finding the lowest point of a very hilly
region, so he hired a plane and parachuted into the re-
gion. Having landed safely, he detached his parachute
and began to stagger about randomly.

At this point, explain to the class that each point on the ter-
rain is a state. Also, explain that the height of each point
corresponds to the energy of the state. This is easily remem-
bered, as the simple formula for potential energy of a mass
above the Earth ismgh, wherem is mass,g is the acceler-
ation due to gravity, andh is height. Height is thus propor-
tional to potential energy.

Although the drunk was obsessed, he was also ex-
tremely tired. Although he staggered randomly, he was
too tired to take uphill steps. If, in placing his foot
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down in the darkness, he felt that it was a step uphill,
he set his foot elsewhere in search of a level or downhill
step.

One weakness of this analogy is that the angle of one’s foot
would provide local slope (gradient) information to guide
the next step downhill. In stochastic local search, we do not
generally assume that the current state provides any indica-
tion of downward direction to another state. We can explain
that the drunk cannot sense his feet, but can sense the differ-
ence of the height of his feet.

The State Interface
At this point, we are ready to introduce students to a pro-
gramming abstraction of the problem. TheState interface,
given here in the Java language, is the set of all methods2

needed for the stochastic local search algorithms we will ex-
plore.
〈State.java〉≡

public interface State extends Cloneable {
void step();
void undo();
double energy();
Object clone();

}

Thestep method changes the object’s state, in effect tak-
ing a random step “nearby” on the landscape of the state
space. When using the term “nearby”, we refer to thelocal
nature of stochasticlocal search. In definingstep , we im-
plicitly define what is local. That is, we impose a structure
on the space for our search. If we simply pick a new random
state uniformly from the entire state space, we defeat the in-
tended locality of the search and degenerate to simple gen-
erate and test. However, if we choose slight modifications to
the state which will generally not cause large changes to its
energy, then we define an energy “landscape” to search. Fi-
nally, we note that the repeated application ofstep should
allow the possibility to transition from any one state to any
other state. We do not wish to be trapped in any part of the
state space.

Theundo method undoes the changes made bystep . In
effect, it rejects the previous step taken. For this reason, the
step method must store sufficient information to undo its
changes. Theundo method makes use of this change infor-
mation to restore the previous state. We make the restriction
on our algorithms that two calls toundo will always have at
least one intervening call tostep . In other words, we will
never seek to undo more than one previous change.

The energy method returns the energy of the current
state. This is the measure we wish to minimize. If we have
a utility of a stateU(s) that we wish to maximize, we can
simply define energye(s) = −U(s).

Theclone method should make a deep copy of the state
which is unaffected by future changes such asstep calls.
This is used in keeping track of the minimum state during
search.

After explaining the interface, we then provide two ex-
amples of State implementations. The first is a variation

2i.e. functions, procedures, etc.

Figure 1: The Rastrigin function.

of the Rastrigin function (see Figure 1), which is a circu-
lar paraboloid with a sinusoidal surface, much like egg crate
foam curved into a bowl shape.

energy(x, y) = x2 + y2 − cos(18x)− cos(18y) + 2

This function has many local minima, but the global min-
imum is at (0,0) with energy 0. The implementation is sim-
ple. We first define the variables of our class:
〈Define variables〉≡

public static final double STDDEV = .05;
public static java.util.Random random

= new java.util.Random();
public double x;
public double y;
public double prevX;
public double prevY;

The staticSTDDEVparameter andrandom number gen-
erator are used instep . The current point on the Rastri-
gin function is (x , y ), and the previous point is (prevX ,
prevY ).

Two constructors allow us to start our search at any point,
or (10, 10) by default.
〈Construct initial states〉≡

public Rastrigin() {
this(10.0, 10.0);

}

public Rastrigin(double x, double y) {
this.x = x;
this.y = y;
prevX = x;
prevY = y;

}

Thestep method stores the previous(x, y) position, and
adds a random Gaussian value to each with a mean of0 and
a standard deviation ofSTDDEV. In this case, the neigh-
borhoodN(s) is the entire state spaceS, and the Gaussian



probability distribution over these neighbors is what pro-
vides search locality.

〈Stochastically choose the next state〉≡
public void step() {

prevX = x;
prevY = y;
x += STDDEV * random.nextGaussian();
y += STDDEV * random.nextGaussian();

}

The method toundo the change ofstep is simple:
〈Undo the state change〉≡

public void undo() {
x = prevX;
y = prevY;

}

Theenergy is the Rastrigin function:
〈Compute energy〉≡

public double energy() {
return x * x + y * y - Math.cos(18 * x)

- Math.cos(18 * y) + 2;
}

A copy of thisRastrigin state is accomplished simply:
〈Copy state〉≡

public Object clone() {
Rastrigin copy = new Rastrigin(x, y);
copy.prevX = prevX;
copy.prevY = prevY;
return copy;

}

Finally, we provide atoString method for convenient
display of the state.
〈Return a state description〉≡

public String toString() {
return "(" + x + ", " + y + ")";

}

All together, these components define our exampleState
implementation calledRastrigin :

〈Rastrigin.java〉≡
public class Rastrigin implements State {

〈Define variables〉
〈Construct initial states〉
〈Stochastically choose the next state〉
〈Undo the state change〉
〈Compute energy〉
〈Copy state〉
〈Return a state description〉

}

The second exampleState implementation we provide is
a bin packing problem state. This implementation is not de-
scribed here, but is available at our website for stochastic
local search teaching resources3.

3http://cs.gettysburg.edu/%7Etneller/resources/sls/

Hill Descent
As a class, one can now interactively develop a simple al-
gorithm for hill descent. We describe one such implementa-
tion here. First we define variables for the current search
state (state ), the current minimum energy search state
(minState ), and the associated energy for each (energy
andminEnergy ).
〈DefineHillDescender variables〉≡

private State state;
private double energy;
private State minState;
private double minEnergy;

We then initialize these variables in the constuctor which is
given an initial state.
〈Construct with initial state〉≡

public HillDescender(State initState) {
state = initState;
energy = initState.energy();
minState = (State) state.clone();
minEnergy = energy;

}

The search method is giveniterations , a number of
steps to take, after which it returns the minimum energy state
(minState ) from all iterations.
〈Search for minimum state〉≡

public State search(int iterations)
{

for (int i = 0; i < iterations; i++) {
if (i % 100000 == 0)

System.out.println(minEnergy
+ "\t" + energy);

state.step();
double nextEnergy = state.energy();
if (nextEnergy <= energy) {

energy = nextEnergy;
if (nextEnergy < minEnergy) {

minState
= (State) state.clone();

minEnergy = nextEnergy;
}

}
else

state.undo();
}
return minState;

}

To help students get a feel for the progress of the search,
we sample the minimum and current energies every 100,000
iterations and print them in two columns. With each iter-
ation, we change the state withstate.step() . If the
state has lesser or equal energy than before, we update our
energy to that value and check if this state is possibly the
best (minimal energy) state seen so far. If, however, the state
has greater energy than before, weundo the change. Fi-
nally, we return the minimal state. Together, these compo-
nents define aHillDescender class.
〈HillDescender.java〉≡

public class HillDescender {



〈DefineHillDescender variables〉
〈Construct with initial state〉
〈Search for minimum state〉

}

Local Minima
Having implementedHillDescender students should
write test programs to see how well this approach performs
with the example problems. In particular, have students note
the behavior with the Rastrigin function, and have them seek
to explain why a close approximation to the global minimum
is not often found.

It is best to have the students arrive at an experiential un-
derstanding oflocal minimaby observing the search getting
trapped in them. Introduce the termlocal minimaand have
students propose means of overcoming them.

Hill Descent with Random Uphill Steps
The dead-tired drunk, making only downhill steps, will
quickly find himself stuck in a ditch, but this ditch will
not necessarily be at the lowest height. Let us suppose
that the drunk is not so extremely tired, and will take a
step uphill with some probability.

We now have the students make a trivial modification to their
code to allow some uphill steps. Whereas before, our con-
dition for accepting a next state was(nextEnergy <=
energy) , we now use the new condition:

(nextEnergy <= energy
|| random.nextDouble() < acceptRate)

where random is a java.util.Random object and
nextDouble returns adouble in the range[0, 1). That
is, we always accept states with lesser or equal energy, and
we accept higher energy states with some given probability
acceptRate . Note that whenacceptRate is set to 0,
we have the same strict hill-descending behavior as before.

Taking this to an extreme, let us imagine thesuper
drunkwho has unlimited stamina and will always take
a step uphill. This drunk will freely wander the land-
scape, neither preferring to go up or down.

Have students setacceptRate to 1, and observe the
poor quality of the resulting searches for the example prob-
lems. This extreme is merely a random walk. Have stu-
dents experiment with different values foracceptRate ,
e.g..1, .01, .001, .0001, etc. for each example problem until
an improvement in average performance over the extremes
is observed. This experimentation can go beyond the lab set-
ting. One might assign students to varyacceptRate with
all other parameters fixed, performing many runs at each set-
ting and plotting the median value.

Simulated Annealing
We see that a drunk with at least some energy to climb
out of local minima is more likely to find lower local
minima. However, our drunk is not at all particular as
to whether the step uphill is big or small. We now con-
sider a drunk who is more likely to take a small uphill
step than a large uphill step.

In the case of an uphill step, our simple condition was
random.nextDouble() < acceptRate . Now we
wish to make this condition dependent upon how far uphill
the step will take us. Natural systems which seek a mini-
mal energy state, such as metals cooling or liquids freezing,
were modeled by Metropolis et al (Metropoliset al. 1953)
in what has come to be known as the Metropolis algorithm.
In their simulation, an uphill step with energy change∆E is
accepted with probabilitye(−∆E

kT ), wherek is Boltzmann’s
constant (1.38 × 10−23 joules/kelvin), andT is thetemper-
ature of the system. In practice, we can and will ignore
Boltzmann’s constant, compensating with our temperature
parameter. That is, we can choose a much smaller temper-
ature parameter as if we are multiplying it byk. This saves
us unnecessary floating point operations in computing the
acceptance condition. Thus our new acceptance condition
is:

(nextEnergy <= energy
|| random.nextDouble()

< Math.exp((energy - nextEnergy)
/ temperature))

Students should discuss what happens to this accep-
tance probability for extremes of∆E and T . This ran-
domized hill descent code should then be copied to a
class SimulatedAnnealer . Replace the parameter
acceptRate with temperature . Students can experi-
ment with differenttemperature settings just as they ex-
perimented with differentacceptRate settings. We next
have students learn about the importance of temperature em-
pirically through the use of applets.

Traveling Salesman Problem The first applet4 is shown
in Figure 2. Each instance of the traveling salesman prob-
lem (TSP) contains 400 cities randomly placed on a 350 by
350 grid. A tour is represented as a permutation of the list
of cities, and the energy functione(s) is simply the total
distance traveled along the tour. We use the next state gen-
eration function of Lin and Kernighan described in (Kirk-
patrick, Gelatt, & Vecchi 1983) in which a section of the
current tour is reversed at each step.

The “Anneal” checkbox toggles the search on/off. Be-
gin by setting the temperature to the minimum, sliding the
slider bar to the extreme left. Check “Anneal” to begin the
annealing. Have students observe and write down the energy
value (“Length”) of this local minimum. Explain that when
the temperature is very low, the acceptance rate approaches
0 and we have our “dead-tired drunk’s” hill-descending be-
havior. Slide the temperature bar to the extreme right. This
corresponds to the “super drunk’s” random walk. Now have
students seek a better solution than the previous local min-
imum by slowly moving the slider bar to the left. Let them
experiment for a good while. This experience can find no
substitute in books, on the board, or from the best of anec-
dotes. Often students will come to understand concepts such
assimulated temperingor restartson their own.

After this experimentation, check the “Clusters” box and
press the new problem button. This is the same clustered

4http://cs.gettysburg.edu/%7Etneller/resources/sls/tsp/



TSP problem as presented in (Kirkpatrick, Gelatt, & Vecchi
1983) where the 400 cities are grouped into nine clusters.
Have students note that the pathsbetweenclusters are best
minimized in a different, higher temperature range than that
where the pathswithin clusters are best minimized. Gross
features of the problem are optimized at higher temperatures
than the details of the problem. The need for different tem-
peratures is further reinforced by an applet demonstrating a
course scheduling problem.

Course Scheduling Problem The second applet5 is
shown in Figure 3. Each randomly generated instance of our
simple course scheduling problem consists of 2500 students,
500 courses, and 12 time slots. Each student is enrolled in 5
unique random courses. Each state of the problem is repre-
sented as a list containing the time slot for each course. Next
states are generated by randomly changing the time slot of
one course. The energy functione(s) is defined as the to-
tal number of course conflicts, i.e. the total number of class
pairs in each student’s enrollment which occur in the same
time slot.

For this demo, the vertical axis of the pane represents
conflicts. As the pane scrolls horizontally with time, and
two lines evolve with the optimization. The blue curve is a
evolving plot sampling the current state energy. The lower
red curve represents the best (minimum) state energy over
time. By experimenting with this applet, students will see
that the best progress is made by adjusting the temperature
such that the distribution of current state energies is not too
far from the current best state. They will find it advantageous
to adjust the temperature over time to minimize scheduling
conflicts.

Annealing Schedules
Next display a simple curve with two local minima of differ-
ent heights:

Beginning his quest with great vigor, the drunk will
freely wander among basins of local minima. When he
becomes sufficiently tired, he will wander to the bottom
of one such basin. If he becomes tired very gradually,
there will come a time when he is more likely to climb
up out of a high basin into a low one than vice versa.
How low a basin the drunk finds depends on how long
the drunk wanders and how gradually he tires.

Now that we have motivatedsimulated annealing(Kirk-
patrick, Gelatt, & Vecchi 1983), we make one final simple
modification to the student’s code. They will have already
fixed a temperature parameter to an initial value. All they
need to do to have a simple geometric annealing schedule
(a.k.a. cooling schedule) is to introduce adecayRate pa-
rameter, set to be slightly less than 1, and add the following
line to the end of the search iteration:

5http://cs.gettysburg.edu/%7Etneller/resources/sls/scheduling/

temperature = temperature*decayRate;

The students have now implemented a simple simulated
annealing algorithm with a geometric annealing schedule.
They will need some time to experiment and discover how
close decayRate should be to 1 to cool at a reason-
able rate. Have them trydecayRate values such as
.9, .99, .999, etc.

Challenge Problems
The next phase of the student’s learning is to take on chal-
lenge problems with these algorithms. Before, the student
was given two implementations of theState interface.
Now it is time for the student to gain exercise in the imple-
mentation of theState interface. We recommend present-
ing a collection of challenge problems and allowing students
to choose a few as homework. These are some of the prob-
lems we have assigned.

The Traveling Salesmen Problem- This can optionally
be modified as in (Presset al. 1992) to include a north-
south river in the center which has an associated reward or
penalty for each crossing. This can also be modified as in
(Kirkpatrick, Gelatt, & Vecchi 1983) to include clustering
of cities.

Course Scheduling Problem- (described above)

N-Queens Problem- Placen queens on ann-by-n chess-
board such that no two queens share the same row, col-
umn, or diagonal.

Stinky Queens Problem- The queens now repel one an-
other. Placen queens on ann-by-n chessboard such that
the minimum Euclidean distance between two queens is
maximized.

Tree Planting Problem - (a continuous variation of the
Stinky Queens problem) Plantn trees within a circular
plot such that all trees can grow to the same maximal ra-
dius before one tree’s canopy touches another or crosses
the plot boundary. In other words, how can one placen
non-overlapping circles with radiusr within a unit circle
such thatr is maximized?

There are, of course, many suitable combinatorial optimiza-
tion problems that would serve as good small challenge
problems. Students implement appropriateState classes,
find good search parameters, and display their results. One
can optionally have students share their problem solving ex-
periences and results in class.

Final Thoughts
There is no substitute for experience. There is a com-
mon tension in introductory AI courses between breadth and
depth. Since it is most often the only exposure that a stu-
dent has to AI, many instructors choose breadth over depth
in order to provide students with a significant index of AI
problem solving techniques.

There is the risk that such an introductory approach to a
topic is like a superficial passing introduction to a person at
a party. The person passes, a moment passes, and the name
is forgotten. However, a meaningful discussion following an



introduction will make a person more memorable. We aim
for such an introductory discussion with our course material.

Fortunately, stochastic local search is one topic where it
is possible to give students a depth of understanding through
experience without a major time investment that would dom-
inate an introductory AI course. Have your students exper-
iment with stochastic local search (e.g. using our simulated
annealing applet for the traveling salesman problem). They
will gain a good grasp of core concepts of stochastic local
search which cannot be as effectively learned by the written
or spoken word.

“One must learn by doing the thing; for though you
think you know it, you have no certainty, until you try.”
- Sophocles

This is but one set of experiences.Simulated annealing
is but one stochastic local search algorithm. There are many
others. If there is another stochastic local search algorithm
that the reader believes is more beneficial, we would recom-
mend evolving an implementation from a trivial algorithm
(e.g. hill descent) to that algorithm, motivating each step of
the evolution experientially as we have here.

The approach we present only touches lightly on a vast
subject. This is in harmony with our goal. We prefer to
give students a brief, positive, and richly experiential taste
of the vast possibilities of stochastic local search. An entire
course or independent study could focus on an introduction
to stochastic local search. Indeed, there is now a suitable
textbook (Hoos & Sẗutzle 2005).

We hope that you and your students benefit greatly from
our experiences and come away with an excitement for this
set of power tools for the mind.
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Figure 2: Traveling Salesman Applet

Figure 3: Scheduling Problem Applet


