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Abstract
Reverse Engineering is focused on the challenging task of understanding legacy pro-
gram code without having suitable documentation. Using a transformational forward
engineering perspective, we gain the insight that much of this difficulty is caused by
design decisions made during system development. Such decisions “hide” the pro-
gram functionality and performance requirements in the final system by applying re-
peated refinements through layers of abstraction, and information-spreading optimi-
zations, both of which change representations and force single program entities to
serve multiple purposes. To be able to reverse engineer, we essentially have to re-
verse these design decisions. Following the transformational approach we can use the
transformations of a forward engineering methodology and apply them “backwards”
to reverse engineer code to a more abstract specification. Since most existing code
was not generated by transformational synthesis, this produces a plausible formal
transformational design rather than the original authors’ actual design. A byproduct
of the transformational reverse engineering process is a design database for the pro-
gram that then can be maintained to minimize the need for further reverse engineer-
ing during the remaining lifetime of the system. A consequence of this perspective is
the belief that plan recognition methods are not sufficient for reverse engineering. As
an example, a small fragment of a real-time operating system is reverse-engineered
using this approach.

1. Introduction

Software engineering practice tends to focus on the design and implementation of a software product with-
out considering its lifetime, usually 10 years or more [TAM92]. However, the major effort in software engi-
neering organizations is spent after development ([Boe81, Gui83]) on maintaining the systems to remove
existing errors and to adapt them to changed requirements.

Unfortunately, mature software systems often have incomplete, incorrect or even nonexistent design docu-
mentation. This makes it difficult to understand what the system is doing, why it is doing it, how the work is
performed, and why it is coded that way. Consequently mature systems are hard to modify and the modifi-
cations are difficult to validate.

For newly developed systems the problem can be reduced by thoroughly documenting the system and
maintaining the documentation together with the system. Ideally, the system documentation describes the
product and the complete design, including its rationale.

Most captured design information is informal (not machine-interpretable). While this is valuable for the
software maintainers, informal information is subject to wide interpretation, and so the usability is limited
by the problem of different software developers using different interpretations of the same description.

Formal descriptions of the design (and its rationale) with a precise semantics can overcome this communi-
cation problem. It can even allow us to modify the design rather than the code (cf. [BAX95]) and, thus, to
modify a software system using semiautomatic tools. Transformational development of software ([NEI84,
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PAR90]) guided by performance criteria ([MCC87]) seems to be the right way to get such descriptions of a
design.

In such an ideal setting there would be no reason for reverse engineering. However, the large amount of ex-
isting software that has to be maintained forces us to face this problem.

Current reverse engineering technology focuses on regaining information by using analysis tools ([BM82]
and by abstracting programs bottom-up by recognizing plans in the source code ([KNE92, RW90A,
RW90B, TFAM96]). The major purpose of such tools essentially is to aid maintainers understand the pro-
gram (cf. [RUG94]). While we believe in the utility of these approaches as part of a larger toolkit and vision,
they are quite inadequate for the task of design recovery. Analysis tools, though valuable, only provide
some design information derived from the structure of the code, not from its intention or construction. Pure
plan recognition is unlikely to be powerful enough to drive reverse engineering for the following reasons:

• legacy code is written using rather tricky encodings to achieve better efficiency,
• all the necessary plan patterns in all the variations must be supplied in advance for a particular appli-

cation, and
• different abstract concepts map to the same code within one application.

Even more important, the main reason for doing reverse engineering is to modify the software system; un-
derstanding it is only a necessary precondition to do so. We consider transformational development with
modification of the design rather than the code as the means to accomplish incremental modification, as it
provides us with considerable theory and techniques to carry it out ([BAX90A, BAX92A]). For existing sys-
tems, this implies a need to reconstruct a plausible transformational design that could have been used to de-
rive the code from a suitable abstract specification of the system, i.e. we want to apply the transformations
backwards from the program to its specification. Recording these transformations (together with the ration-
ale for applying them) then allows us to modify the design instead of just the program code.

In the following we explore forward and reverse engineering in greater detail and provide an example for
transformational reverse engineering legacy assembler code to a high-level concept.

2. Forward Engineering

In current forward engineering practice informal requirements are somehow converted into a semi-formal
specification using domain notations without underlying precise semantics like e.g. data-flow diagrams, en-
tity-relationship diagrams, natural language descriptions, or other problem specific informal or semiformal
notations. The program then is constructed manually (i.e. in an error prone way) from the specification by a
creative agent, the programmer.

Hidden in this creative construction of the program from the specification are a set of obvious as well as
non-obvious design decisions about how to encode certain parts of the specification in an efficient way us-
ing available implementation mechanisms to achieve performance criteria (the why of the design decisions).
As an example, a specification fragment requiring associative retrieval using numeric keys may be imple-
mented using hash tables, achieving good system reaction time. These decisions are usually not docu-
mented.

Over time the program code is modified to remove errors and to adapt the system to changed requirements.
The requirements may change to allow usage of alphanumeric keys and to be able to handle large amounts
of data, and the implementation revised to use disk-based B-trees. Unfortunately, often these changes take
place without being reflected correctly in the specification. The gap between the original specification and
the program becomes larger and larger. The result is a program code without a proper specification and with
untrustworthy design information (such as comments describing the hash tables!). The code becomes diffi-
cult to understand and, thus, difficult to maintain.

To overcome this deficiency, it is important to change the specification first and then reflect the changes in
the program code. A necessary precondition for this is to have reliable information about the relationship
between the specification and the program code. The design and its rationale describe the how and why of
this relationship; however, they are not documented in current practice.
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There are two known approaches to reduce the gap between the specification and the program.

The first one is the development of software by stepwise refinement introducing intermediate descriptions
of the system between the specification and the final program code. The intermediate descriptions should
reflect major design decisions during the construction, which helps to understand the software and its de-
sign. However, this approach has some important drawbacks: the development steps are still manual, they
are too large not to contain hidden design decisions, there is no rationale directly associated to the steps, the
relation between the descriptions can only be established a posteriori, and there are a lot more documents to
be maintained for incorporating changes of the system requirements.

Despite these drawbacks, the stepwise refinement approach is not that bad. Consequently attacking them
leads us to the second approach: the transformational development of software where the fairly large man-
ual development steps are replaced by smaller formal correctness-preserving transformations each of which
reflects a small design decision or optimization.

A necessary prerequisite for this approach is to have a formal specification which may contain domain no-
tations (e.g. for the general purpose domains of logical descriptions and data-flow diagrams and for special
application domains like e.g. money management and loans) by giving them a precise underlying semantics.
Based on this the program code can then be derived by making small implementation steps using formal
correctness-preserving transformations leading from more abstract specifications to more concrete specifi-
cations. The final program code then is correct by construction with respect to the formal requirements
specification. Each transformation falls into one of three categories: refinements (i.e. maps of concepts from
an abstract level to a more concrete one), optimizations (i.e. maps to reduce the resources used at a level of
abstraction according to some criteria), and jittering transformations (that eventually enable the application
of refinements and optimizations). The decision to apply a particular transformation is thus crucial design
information. The applied transformations coupled with the rationale for the choice of them is the design in-
formation that “explains” the code. It is called the transformational design of the code from the specifica-
tion.

The selection of a transformation to apply to a certain specification in general is still a creative process but
is guided by the performance criteria to be achieved. This guided selection of the transformations allows the
development process to be supported by a semiautomatic system that contains a large repertoire of available
transforms by applying them to achieve or at least approach the performance criteria.

The transformations needed for practical software engineering comprise all those design decisions implic-
itly used by current software developers including techniques like the following ones (see e.g. [PAR90,
RSW95, RUG94]):

• Decomposition - Most problems can be decomposed to subproblems which in general is possible in
different ways. The actual hierarchical structure of the code represents only one particular choice
from the set of possible decomposition.

• Generalization/Specialization - If different components are similar it may be possible to construct a
more general version that comprises both of them as special cases. Vice versa, for efficiency reasons
it may be a good choice to specialize a component for a certain (part of the) application.

• Choice of representation - To be able to implement high-level data types in program code it is often
necessary to change its representation. A common example is the representation of sets by lists.

• Choice of algorithm - High-level concepts can be realized by an algorithm in many different ways.
The choice between which may be enforced by badly documented or even undocumented perform-
ance criteria that have to be satisfied.

• Interleaving - For efficiency reasons it may be useful to realize different concepts in the same section
of code or the same data structure.

• Delocalization - Certain high-level concepts may be spread throughout the whole code introducing
distracting details in other concepts (see the study of the effects of delocalization on comprehension
in [LS86]).

• Resource Sharing - Interleaved code often allows different concepts to share some resources like e.g.
control conditions, intermediate data results, functions, names, and other computational resources.

• Data caching/Memoization - If some data, that has to be computed, is needed often or its computa-
tion is expensive it is worth to cache the data, i.e. to memoize it for later reuse.



WCRE4 4 © 1997 Semantic Designs, Inc.

• Optimizations - To achieve highly efficient code (due to the need of satisfying e.g. memory or reac-
tion time constraints) many different optimizations are used. Such optimizations comprise

• the folding and unfolding (inlining) program code,
• the use of algebraic properties of functions,
• the merging of computations by composing or combining functions,
• partial evaluation (often in the form of context-dependent simplification),
• finite differencing,
• result accumulation,
• recursion simplification and elimination,
• loop fusion,
• optimizations typically performed by good compilers (code motion, common subexpression

elimination, partial redundancy removal), and
• domain specific optimizations like e.g. minimizing a finite state machine recognizing a certain

language.

All these design decisions may overlap and may be delocalized during the construction of the program code
from the specification. Whether these methods are carried out mechanically by a tool or informally by smart
programmers, the resulting software systems are very difficult to understand.

The transformational software development approach has the advantage that it allows the automatic re-
cording of the design decisions made during the derivation of the final program code from the formal speci-
fication. Provided the selection of the transformations that are applied during this development are guided
by the performance criteria to be achieved and the relation between the selection and the performance crite-
ria is recorded we get the complete design together with its rationale as the product of software develop-
ment. The code itself is just a byproduct that is correct by construction.

Recording this design information allows us to modify the specification instead of the code and then to
modify the design to get a new implementation of the modified specification. The formal nature of trans-
formations makes such design modifications supportable by a semiautomatic tool that increases the reliabil-
ity and reduces the cost of maintaining the system.

3. Reverse Engineering

If all existing software had been developed using a transformation system recording the design and its ra-
tionale there would be no need for reverse engineering any code. However, we have to make a concession
to reality. A huge amount of conventionally developed software exists and such systems will continue to be
developed for a long time.

These systems have errors and continual demand for the enhancement of their functional and performance
requirements. Modification is a necessity. This means that there is a fundamental need to understand them.
As they are often badly designed and have an incomplete, nonexistent, or, even worse, wrong documenta-
tion without any design information, this is a challenging task.

Currently a major approach to understanding consists of trying to recognize plans (code fragments imple-
menting programming concepts) bottom-up from the program to a more abstract description ([RW90A]).
Essentially, this is done by pattern matching on an internal representation of the code (e.g. an abstract syn-
tax tree) which leads to detecting patterns of higher-level plans or concepts in a lower-level code.

This approach has a major drawback: It depends on having developed all (or at least all important) plan in-
stances that may occur in the code that we want to understand. Unfortunately these plans can be (and have
been) realized in many different ways because of the interactions between many possible design decisions
(i.e. transformations). Imagine a logical array of structures; it can be implemented as an array of structures
or a structure of arrays. Code to sort the array will look very different depending of the choice of imple-
mentation. A set of plans for sorting must somehow account for all the possible different representations of
the data.
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Thus, to detect a plan in legacy code we have to be able to detect all these different realizations of the same
plan. But unfortunately we need different patterns to detect these different realizations; and all these pat-
terns have to exist in advance to be able to reverse engineer the code, which is impossible because of the
multitude of conceivable realizations all solving the same problem.

Worse, we must take into account that the plans we want to recognize are interleaved, delocalized [LS86],
and share resources. So we must find plan patterns in the code that are intertwined with other plan patterns
both of which may be scattered throughout the whole program code.

Thus, to effectively perform the reverse engineering task we have to use some creativity to detect and sepa-
rate the high-level concepts in the code; a task that in general cannot be performed in advance by providing
a reasonable amount of predefined plan patterns even together with sophisticated pattern matching rules.

These problems can be overcome by two different approaches. The first one is to allow a reverse engineer
to add further plans, realizing patterns, and possibly further intertwining rules∗ to enable a plan recognizer to
detect the actual realization that can be found in the code. However, to be able to maintain the system we
are not only interested in the plan that is realized in the code but also in the design and its rationale that
could have led from the plan to its realization in the actual code. Thus, the reverse engineer not only has to
provide the plan pattern for the actual realization of a plan but also the transformations and the justifications
for applying them, i.e. (s)he has to forward engineer a piece of software and achieve a certain solution that
has been used in the code.

As an alternative approach, we can achieve the same effect by using small transformations backwards (these
transformations may or may not already be provided by a forward transformation engine) and abstract the
code step by step the end result of which is an abstract plan (or a set of plans) corresponding to the given
code. In essence, the transformations applied backwards “jitter” the code into a form in which canonical
plans are more easily found.

                                                          
∗ Note that the intertwining rules essentially are forward transformations. These transformations must be

applied to existing patterns to derive new intertwined patterns.

Function ReverseEngineer(Code,SetOfTransforms) returns DesignHistory
begin
     // Assert: Transforms are of form LHS => RHS
     DesignHistory=empty; // no design information yet
     AbstractProgram:=Code; // starting state
     repeat
         { // Plan recognition component:

           MatchingTransformations:=
                   MatchRightHandSides(SetOfTransforms,AbstractCode);
           Display(MatchingTransformations);
         };
         { // Missing knowledge inserted here
            ChosenTransform:=
                  InteractivelyChoose(MatchingTransformations);
            If ChosenTransfrom=DONE
            Then Return DesignHistory;
            Else If ChosenTransform=NONE
            Then { ChosenTransform:=NewlyDefinedTransform();
                   SetOfTranforms:=
                        Union(SetOfTransforms,ChosenTransform);
                 };
             AbstractCode:=
               ApplyTransformInverse(ChosenTransform,AbstractCode);
             DesignHistory:=Append(DesignHistory,ChosenTransform);
         };
     end;
end

Figure 1: Simple Model of  Transformational Reverse Engineering
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Such an abstract plan may already exist in the system or may be new domain knowledge developed during
the reverse engineering process. By recording the (reverse) transformation steps used to achieve that plan,
we acquire a plausible design that can be used as a formal basis for maintaining the reverse engineered sys-
tem by maintaining the design. Doing so then avoids the need for repeatedly reverse engineering the system
over its lifetime, caused by the continuous modification of its code.

As a side-benefit the transformational reverse engineering approach lets us acquire domain knowledge as
well as capture a possible design. It is not necessary to define the domain knowledge in advance. Samples
include new concepts identified by the reverse engineer along with implementations as found in the code.
This information can also be used to develop and maintain other systems; i.e. we gain additional knowledge
that can be used by a forward engineer.

While we argue that transformational reverse engineering should be much more effective than pure plan
recognition, though plan recognition has its place. First, the same pattern matching technology on which
plan recognition is based is used by any rewrite component of transformation systems (see Figure 1). Sec-
ond, plans may be able to “tile” a significant part of an existing system, providing strong clues about some
aspects of the code. These clues can be used as cues for guiding the reverse application of transformations.
As an example, finding a computation that maps a string to a natural number is a hint that hashing is occur-
ring, and hash-table related transformations should be attempted.

Comparing transformational reverse engineering with transformational forward engineering we see that both
need domain knowledge and a semiautomatic transformation engine that is guided by some additional crite-
ria to reduce the effort needed to develop the product, i.e. the system design.

Thus, we can obviously conclude that:
Reverse engineering needs the same knowledge and infrastructure as forward engineering.

Reverse engineering “just” applies the forward transformations backwards, i.e. in reverse.

4. A Legacy Reverse Engineering Example: Semaphores

In this section we demonstrate that transformational reverse engineering is feasible in practice by applying it
manually to a real example. Our purpose here is not to specifically carry out this task, nor to provide precise
algorithms, but rather to highlight the various decisions and how to handle them transformationally. In par-
ticular, we want to make the point that plan recognition cannot handle this task, and that reverse transfor-
mation can. We do not claim that this process is automatic. We assume that the reverse engineer has consid-
erable informal problem domain knowledge, and incrementally provides guidance to a tool that records the
transformations used for later inspection and maintenance.

The example is hand-coded, highly tuned legacy Motorola 6809 assembler code from a 1980s operating
system written by one of the authors. We will reverse engineer from the assembly source back to the ab-
straction the code represents. The domain knowledge used by the engineer is related to operating system
code, specifically to semaphores. This small bit of information provides considerable focus to the process.

The goal of the code is to release a semaphore resource to allow another waiting, possibly higher priority
task to eventually acquire the semaphore and continue.

Having some domain knowledge about task synchronization (including at least synchronization with sema-
phores) and not being interested in how the highest priority task gets the processor to run we expect to see
something like the following abstract code:
procedure RT_UnLock(x: ptr to semaphore)
begin        // unlock specified semaphore

V(x);      // release a resource unit
return; // return to original caller

end;

The actual code fragment we intend to reverse-engineer is provided below. (The reader need not examine it
carefully, as we abstract it immediately on the next page). Our smart reverse engineer determines it is the
right code by decoding the assembly labels, and doing some control flow analysis.
RT:UnLock ; unlock block of code whose semaphore is in (X)

intds ; lock out the world momentarily
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inc scb:count,x ; anybody in queue ?
bgt RT:ITSX ; b/ no, done releasing resource
stx itempx ; save pointer to semaphore
ldx scb:tcbq,x ; pointer to TCB to activate
ldd tcb:nexttcb,x ; find pointer to TCB following that
stx itempd ; save pointer to TCB to activate
ldx itempx ; pointer to semaphore
std scb:tcbq,x ; remove task from SCB queue
ldx itempd ; pointer to TCB to make ready to run

RT:ITSC ; insert task at (X) into ready queue and switch contexts if needed
; Assert: interrupts are disabled here

jsr RT:ITIQ ; insert task into ready queue
ldx RT:TCBQ ; are we still highest priority task ?
cmpx RT:CTCB ; ... ?
beq RT:ITSX ; b/ yes, pass control to caller
ldx #RT:ISCH ; no, force task switch
jmp RT:SInt ; by interrupt to task scheduler

RT:ITSX inten ; enable interrupts and return to caller
rts

The code comments here are original. (The comments in the transformed code are informally derived from
these. We do not really expect a transformation system to do this.)

This code contains several design decisions some of which we consider in greater detail below. For this
code, it is important to know that releasing a semaphore resource is interleaved with priority scheduling; for
efficiency reasons the current task “voluntarily” gives up the processor provided it is no longer the highest
priority task. Thus, in order to be able to reverse engineer this code we must have (or develop) some knowl-
edge about priority scheduling (a problem that goes beyond the scope of this paper).

Since the gap between the assembler code and the procedural program code we want to abstract to is pretty
large we make a first step back using an intermediate domain notation that is sometimes used by compilers
to translate from higher-level procedural code to assembler: a register transfer language (RTL). To do that
we can apply the following straightforward TransformSet of refining transformations backwards:
call subroutine; ⇒ jsr subroutine
goto target; ⇒ jmp target
return; ⇒ rts
goto x+offset; ⇒ jmp offset,x
x:=address(variable); ⇒ ldx #variable
x:=variable; ⇒ ldx variable
variable:=x; ⇒ stx variable
x:=x->offset; ⇒ ldx offset,x
d:=x->offset; ⇒ ldd offset,x
(x->offset):=d; ⇒ std offset,x
int_enable:=true; ⇒ inten
int_enable:=false; ⇒ intds
(x->offset):=x->offset+1; cc:=compare(x->offset,0); ⇒ inc offset,x
cc:=compare(x,variable); ⇒ cmpx variable
if cc=0 then goto label fi; ⇒ beq label
if cc>0 then goto label fi; ⇒ bgt label

These transformations are M6809 specific. Obviously, these transformations are simple pattern matching
rules that can be applied to existing assembler code simply and automatically. The design history must
capture the application of all of these; it can capture them as a set rather than a linear sequence since there is
no real order requirement.

Before looking at the resulting RTL-code for our example let us introduce four simple optimizing transfor-
mations (which are equivalence transformations and, thus, may be used in both directions for our purpose):

[common subexpression elimination]
code(expression) Û variable:=expression; code(variable)

where variable is a new variable not occurring anywhere else in the program code and there is no
assignment to a variable occurring in expression in the program code code
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[register life-time renaming]
newvariable:=expression1; code(newvariable); variable:=expression2;
Û variable:=expression1; code(variable); variable:=expression2;

where newvariable is a new variable not occurring anywhere else in the program code
[dead assignment elimination]
variable:=expression; Û ε

if variable is not used again in the code execution before a value is assigned to it the next time
[compare introduction]
(expression1 relation expression2)

       Û compare(expression1,expression2) relation 0
These transformations are useful for most assembly reverse engineering tasks. We remark that the simple
model of structural pattern matching used by most plan recognition engines does not work for these; data
flow analysis is required.

Applying the refining and optimizing transformations backwards may lead us to the following RTL-code:
RT_UnLock: // unlock block of code whose semaphore is in register X

int_enable:=false; // lock out the world momentarily
(x->scb_count):=(x->scb_count)+1; // release resource unit
if (x->scb_count>0) then goto RT_ITSX fi;
ready_task:=(x->scb_tcbq); // pointer to TCB to activate
(x->scb_tcbq):=

                   ready_task->tcb:nexttcb; // remove task from SCB queue
x:=ready_task; // pointer to TCB to make ready to run

RT_ITSC: // insert task X into queue and switch contexts if needed
call RT_ITIQ; // insert task into ready queue
if (RT_TCBQ=RT_CTCB)

           then goto RT_ITSX fi;  // still highest priority?
x:=address(RT_ISCH); // no, force task switch
goto RT_SInt; // by interrupt to scheduler

RT_ITSX: int_enable:=true; // enable interrupts
        return; // return to caller

To be able to reverse engineer further we use our domain knowledge to detect some non-obvious optimiza-
tions that have been used during the development of the code:

• The statement “goto RT_SInt;” actually does not indicate a continuation of “RT_ITSC” but is an op-
timized call of a subroutine with a following “return;”. Thus it has to be replaced by the statements
“call RT_SInt; return;”.

• “RT_ITSC” itself is a subroutine that happened to be located at the end of “RT_UnLock” but may be
called from another place in the program code (which is not shown in this program fragment). This
means that we have to replace the control flow from “RT_UnLock” to “RT_ITSC”, that is caused by
incrementing the program counter in the processor, by a call to “RT_ITSC” as a subroutine followed
by a “return;”.

• “RT_ITSX” is a continuation for both “RT_UnLock” and “RT_ITSC” under certain conditions. It is
a parameterless subroutine for its own. Thus jumps to it (using “goto RT_ITSX;”) have to be re-
placed by “call RT_ITSX; return;” For sake of simplicity we inline the simple code of this proce-
dure into the caller.

• There is a hidden convention in the code for the parameters to the procedures “RT_UnLock” and
“RT_ITSC” (and “RT_SInt”) which are placed in the register X. To be able to reverse engineer to
parametric procedures we have to detect this fact. Then we can replace “label: code return;” by
“procedure label(x) begin code return; end;” provided there is no goto-statement in the whole pro-
gram code entering or leaving the body of the procedure, i.e. code. This includes a goto-statement to
“ label”. Correspondingly, for these procedures we replace “call label;” on the caller sides by “call
label(x);”.
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Additionally using the obvious equivalence transformation
[if-then-else with procedure return]
if condition then code1; return; fi; code2; return;

 Û if condition then code1; else code2; fi; return;
if there is no goto-statement entering or leaving code1 or code2

and some of the optimizing transformations given above we get the following program code:
procedure RT_UnLock(x)
  begin // unlock block of code whose semaphore is in register X

int_enable:=false; // lock out the world momentarily
(x->scb_count):=(x->scb_count)+1; // release resource unit
if (x->scb_count>0) then // no waiting task
int_enable:=true; // enable interrupts

else  // waiting task
ready_task:=(x->scb_tcbq); // pointer to TCB to activate
(x->scb_tcbq):=ready_task->tcb:nexttcb; // remove task from SCB queue
call RT_ITSC(ready_task);

fi;
return;

  end;
procedure RT_ITSC(x)
  begin // insert task X into queue and switch contexts if needed

call RT_ITIQ(x) // insert task into ready queue
if (RT_TCBQ=RT_CTCB) then // we are still highest-priority task
int_enable:=true; // enable interrupts

else // another task is highest-priority
call RT_SInt(address(RT_ISCH)); // force task switch by scheduler call

fi;
return;

  end;

Now let us try to gain a deeper insight into the procedure “RT_ITSC”. To do that we have to know some-
thing about the organization of the ready queue (which is not possible by just looking at the program frag-
ment we can handle in this paper):

The tasks in the ready queue are ordered with respect to their priority, i.e. the highest priority task is at
the beginning of the queue whereas the lowest priority task can be find at the end of the queue. The
pointer to the whole queue is identical to the pointer to the first task in the queue.

Looking into the procedure “RT_ITSC” we see a check whether the current task ‘RT_CTCB” is the same as
the highest-priority task at the head of the ready queue “RT_TCBQ”. Thus, the task scheduler (which
switches the program context to execute the highest-priority task) is called if and only if the highest priority
task is not the current task (which called the procedure). This means that the solution reflects the fact that a
context switch to another task is expensive and therefore should be avoided if the other task is just the cur-
rent one. However, we are not interested in getting a highly efficient program code but in getting an abstract
description of the procedure, i.e. we do not have to avoid the call to the scheduler for efficiency reasons.
With the additional knowledge of “int_enable=true” after calling “RT_SInt” we can simplify “RT_ITSC”
to:
procedure RT_ITSC(x)
  begin // insert task X into queue and switch contexts if needed

call RT_ITIQ(x) // insert task into ready queue
call RT_SInt(address(RT_ISCH)); // force task switch by scheduler call

// current task may get the processor
return;

  end;

Inlining∗ the procedure “RT_ITSC” into “RT_Unlock” then allows us to move the statement
“int_enable:=true;” from inside the if-statement to the end of the procedure.& Performing some further
equivalence transformations on the if-statement and its condition we obtain the following code:

                                                          
∗ This inlining does not mean that the procedure “RT_ITSC” becomes obsolete. The procedure is called

from additional places in the operating system.
& Note, that “int_enable=true” is valid after calling “RT_SInt” which means that we can add the statement

“int_enable:=true;” directly following the call without changing the meaning of the program code.
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procedure RT_UnLock(x)
  begin // unlock block of code whose semaphore is in register X

int_enable:=false; // lock out the world momentarily
(x->scb_count):=(x->scb_count)+1; // release resource unit
if (x->scb_count<=0) then // waiting task
ready_task:=(x->scb_tcbq); // pointer to TCB to activate
(x->scb_tcbq):=ready_task->tcb:nexttcb; // remove task from SCB queue
call RT_ITIQ(x) // insert task into ready queue
call RT_SInt(address(RT_ISCH)); // force task switch by scheduler call

fi;
int_enable:=true; // enable interrupts
return;

  end;

Because of lack of space in this paper we cannot present the details of further reverse engineering of this
code. However, the next step has to recover the abstract data types used, i.e. “semaphore” and “task” to-
gether with their associated procedures. Doing that finally could lead us to the following code:
procedure RT_UnLock(x: ptr to semaphore)
  begin // unlock specified semaphore

int_enable:=false; // lock out the world momentarily
call Semaphore.Release(x); // release resource unit
if (Semaphore.Desired(x)) then // waiting task
  // insert task into ready queue:

          call Task.InsertIntoReadyQueue(Semaphore.Remove(x))
          // continue highest-priority task:

   call Task.ContinueHighestPriorityTask();
fi;
int_enable:=true; // enable interrupts
return;

  end;

Abstracting this in a task synchronization domain then should lead us to the expected abstract code:
procedure RT_UnLock(x: ptr to semaphore)
begin        // unlock specified semaphore

V(x);      // release a resource unit
return; // return to original caller

end;

Recording all the transformations used in this process allows us to reapply them to this code to reproduce
the original code. We note that replacing the transformations that intertwine priority scheduling code with
spin-lock code will allow us to regenerate a revised semaphore unlock procedure for multiple processors.
This is precisely the kind of maintenance task that we desire reverse engineering to support.

Now let us shortly consider a big problem that may arise when trying to reverse engineer the code using
plan patterns and look specifically at the priority scheduling.

Let us assume that there exist some domain knowledge and associated plan patterns about priority schedul-
ing. On an abstract level we may find e.g. the following procedural plan for adding an additional task into
the ready queue and (re)scheduling the tasks:
Task.InsertIntoReadyQueue(task, priority);
Task.RunHighestPriorityTask();

However, in the assembler code we found something that roughly corresponds to the following refined plan
(that demands the usage of a certain class of implementations for priority queues):
Task.InsertIntoReadyQueue(task, priority);
if Task.Current()=Task.FirstTaskInReadyQueue() then
Task.ContinueCurrent();

else
Task.ContinueHighestPriorityTask();

fi;

Who produced/produces this refined plan? Can we expect it to be part of an existing domain about priority
scheduling? Which additional refinements of the original plan do we need to cover solutions used in other
legacy codes for priority scheduling?

The answer to these questions is: No one can provide in advance all the possible plan refinements that may
be found in legacy code. This means that we need a creative plan refinement generator, i.e. a semiautomatic
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forward transformation engine. But then, why don’t we just generate the plan refinement backwards (on
demand) by reverse engineering the code using the forward transformations in the reverse direction?

5. Related Work

Considerable effort has been invested in plan recognition. The Programmer’s Apprentice ([RW90A]) is still
one of the most sophisticated, representing plans (“cliches”) using data and control flow. This representa-
tion provides some language independence and maximizes the ability to match a cliché against arbitrarily
ordered code. PA essentially attempts to tile (with overlaps) a program recursively with cliches to explain it.
We hope our example convincingly shows that recursively tiling cannot explain even small fragments of
code.

A difficult problem with a large set of plans is the cost of matching them to a potentially very large pro-
gram. Efficient graph matchers ([RW90B]) and constraint satisfaction solvers ([WQ95]) have been imple-
mented to help match plans against code. Both these types of matchers can be used to good effect in a trans-
formation system. However, we hope to avoid the “big-bang” problem of explaining the entire program at
once by performing incremental recovery, storing the results of previous sessions in design histories, and
reusing the design for maintenance.

The Maintainer’s Assistant (MA) [WB96] attacks the software maintenance problem by using transforma-
tional methods, using a core representation for programs derived from the lambda calculus. This gives an
excellent foundation with clear semantics, and so allows serious transformations to be applied to the origi-
nal code. MA appears to be used for porting and translation rather than explanation and modification.

6. Concluding Remarks

The reason for performing reverse engineering is to maintain legacy code. Therefore, it should not be fo-
cused on program understanding but on system maintenance instead. This should be done in a way that frees
us from reverse engineering a system again and again because of modifications made to its code over time.

Hence, reverse engineering has to be focused on design recovery. As we need sophisticated tool support to
perform system maintenance efficiently, the recovered design has to be based on formal methods.

We have seen that transformational reverse engineering is a feasible approach to recover such a design. This
means that we essentially need the same domain knowledge and infrastructure as we need for transforma-
tional forward engineering that can provide us with a design during the systems’ construction. All the do-
mains, their notations, and the associated transformations within each domain as well as between domains
that are needed for forward engineering are also needed to reverse engineer legacy code to recover its
missing design.

Transformational reverse engineering can easily be performed incrementally which allows us to reverse en-
gineer only those parts of the code that are needed for an actual maintenance task. Over time more and more
parts of the code will be abstracted and the abstraction level will become higher and higher possibly until
we get an abstract requirements specification of the whole system.

All this can be supported effectively by a domain based transformation engine that can apply transforma-
tions forwards and backwards and can modify a design incrementally. Such a system, called the Design
Maintenance System (DMS), which is intended for handling commercial size software, is currently under
development at Semantic Designs. We hope to be able to report on concrete experience next year.
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