Bool value of Tensor with more than one value is ambiguous in Pytorch

83,675

Solution 1

In your minimal example, you create an object "loss" of the class "CrossEntropyLoss". This object is able to compute your loss as

loss(input, target)

However, in your actual code, you try to create the object "Loss", while passing Pip and the labels to the "CrossEntropyLoss" class constructor. Instead, try the following:

loss = CrossEntropyLoss()
loss(Pip, Train["Label"])

Edit (explanation of the error message): The error Message Bool value of Tensor with more than one value is ambiguous appears when you try to cast a tensor into a bool value. This happens most commonly when passing the tensor to an if condition, e.g.

input = torch.randn(8, 5)
if input:
    some_code()

The second argument of the CrossEntropyLoss class constructor expects a boolean. Thus, in the line

Loss = CrossEntropyLoss(Pip, Train["Label"])

the constructor will at some point try to use the passed tensor Train["Label"] as a boolean, which throws the mentioned error message.

Solution 2

You can not use the class CrossEntropyLoss directly. You should instantiate this class before using it.

original code:

loss = CrossEntropyLoss(Pip, Train["Label"])

should be replaced by:

loss = CrossEntropyLoss()
loss(Pip, Train["Label"])

Solution 3

First Instantiate loss

L = CrossEntropyLoss()

Then compute loss

L(y_pred, y_true)

This will fix the error.

Share:
83,675
Admin
Author by

Admin

Updated on July 09, 2022

Comments

  • Admin
    Admin 11 months

    I want to create a model in pytorch, but I can't compute the loss. It's always return Bool value of Tensor with more than one value is ambiguous Actually, I run example code, it work.

    loss = CrossEntropyLoss()
    input = torch.randn(8, 5)
    input
    target = torch.empty(8,dtype=torch.long).random_(5)
    target
    output = loss(input, target)
    

    Here is my code,

    ################################################################################
    ##
    ##
    import torch
    from torch.nn import Conv2d, MaxPool2d, Linear, CrossEntropyLoss, MultiLabelSoftMarginLoss
    from torch.nn.functional import relu, conv2d, max_pool2d, linear, softmax
    from torch.optim import adadelta
    ##
    ##
    ##  Train
    Train = {}
    Train["Image"]    = torch.rand(2000, 3, 76, 76)
    Train["Variable"] = torch.rand(2000, 6)
    Train["Label"] = torch.empty(2000, dtype=torch.long).random_(2)
    ##
    ##
    ##  Valid
    Valid = {}
    Valid["Image"]    = torch.rand(150, 3, 76, 76)
    Valid["Variable"] = torch.rand(150, 6)
    Valid["Label"]    = torch.empty(150, dtype=torch.long).random_(2)
    ################################################################################
    ##
    ##
    ##  Model
    ImageTerm    = Train["Image"]
    VariableTerm = Train["Variable"]
    Pip = Conv2d(in_channels=3, out_channels=32, kernel_size=(3,3), stride=1, padding=0)(ImageTerm)
    Pip = MaxPool2d(kernel_size=(2,2), stride=None, padding=0)(Pip)
    Pip = Conv2d(in_channels=32, out_channels=64, kernel_size=(3,3), stride=1, padding=0)(Pip)
    Pip = MaxPool2d(kernel_size=(2,2), stride=None, padding=0)(Pip)
    Pip = Pip.view(2000, -1)
    Pip = torch.cat([Pip, VariableTerm], 1)
    Pip = Linear(in_features=18502, out_features=1000 , bias=True)(Pip)
    Pip = Linear(in_features=1000, out_features=2 , bias=True)(Pip)
    ##
    ##
    ##  Loss
    Loss = CrossEntropyLoss(Pip, Train["Label"])
    

    The error is on Loss = CrossEntropyLoss(Pip, Train["Label"]), thanks.