Confusion matrix and test accuracy for PyTorch Transfer Learning tutorial

28,770

Solution 1

Answer given by ptrblck of PyTorch community. Thanks a lot!

nb_classes = 9

confusion_matrix = torch.zeros(nb_classes, nb_classes)
with torch.no_grad():
    for i, (inputs, classes) in enumerate(dataloaders['val']):
        inputs = inputs.to(device)
        classes = classes.to(device)
        outputs = model_ft(inputs)
        _, preds = torch.max(outputs, 1)
        for t, p in zip(classes.view(-1), preds.view(-1)):
                confusion_matrix[t.long(), p.long()] += 1

print(confusion_matrix)

To get the per-class accuracy:

print(confusion_matrix.diag()/confusion_matrix.sum(1))

Solution 2

Here is a slightly modified(direct) approach using sklearn's confusion_matrix:-

from sklearn.metrics import confusion_matrix

nb_classes = 9

# Initialize the prediction and label lists(tensors)
predlist=torch.zeros(0,dtype=torch.long, device='cpu')
lbllist=torch.zeros(0,dtype=torch.long, device='cpu')

with torch.no_grad():
    for i, (inputs, classes) in enumerate(dataloaders['val']):
        inputs = inputs.to(device)
        classes = classes.to(device)
        outputs = model_ft(inputs)
        _, preds = torch.max(outputs, 1)

        # Append batch prediction results
        predlist=torch.cat([predlist,preds.view(-1).cpu()])
        lbllist=torch.cat([lbllist,classes.view(-1).cpu()])

# Confusion matrix
conf_mat=confusion_matrix(lbllist.numpy(), predlist.numpy())
print(conf_mat)

# Per-class accuracy
class_accuracy=100*conf_mat.diagonal()/conf_mat.sum(1)
print(class_accuracy)

Solution 3

Follwing the answer above... Here is an answer with some visualization

nb_classes = 9
confusion_matrix = np.zeros((nb_classes, nb_classes))
with torch.no_grad():
    for i, (inputs, classes) in enumerate(test_loader):
        inputs = inputs.to(DEVICE)
        classes = classes.to(DEVICE)
        outputs = model(inputs)
        _, preds = torch.max(outputs, 1)
        for t, p in zip(classes.view(-1), preds.view(-1)):
                confusion_matrix[t.long(), p.long()] += 1

plt.figure(figsize=(15,10))

class_names = list(label2class.values())
df_cm = pd.DataFrame(confusion_matrix, index=class_names, columns=class_names).astype(int)
heatmap = sns.heatmap(df_cm, annot=True, fmt="d")

heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right',fontsize=15)
heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right',fontsize=15)
plt.ylabel('True label')
plt.xlabel('Predicted label')
;

enter image description here

Solution 4

I used the following to convert the torch tensors to an int defining the predicted class.

x = [torch.max(tensor).item() for tensor in x_data]
y = [torch.max(tensor).item() for tensor in y_data]

i hope this helps! i'm still a noob so please be gentle...

Solution 5

Another simple way to get accuracy is to use sklearns "accuracy_score". Heres an example:

from sklearn.metrics import accuracy_score
y_pred = y_pred.data.numpy()
accuracy = accuracy_score(labels, np.argmax(y_pred, axis=1))

First you need to get the data from the variable. "y_pred" is the predictions from your model, and labels are of course your labels.

np.argmax returns the index of the largest value inside the array. We want the largest value as it corresponds to the highest probability class when using softmax for multi-class classification. Accuracy score will return a percentage of matches between the labels and y_pred.

Share:
28,770
Mona Jalal
Author by

Mona Jalal

contact me at [email protected] I am a 5th-year computer science Ph.D. Candidate at Boston University advised by Professor Vijaya Kolachalama in computer vision as the area of study. Currently, I am working on my proposal exam and thesis on the use of efficient computer vision and deep learning for cancer detection in H&E stained digital pathology images.

Updated on July 09, 2022

Comments

  • Mona Jalal
    Mona Jalal almost 2 years

    Following the Pytorch Transfer learning tutorial, I am interested in reporting only train and test accuracy as well as confusion matrix (say using sklearn confusionmatrix). How can I do that? The current tutorial only reports train/val accuracy and I am having hard time figuring how to incorporate the sklearn confusionmatrix code there. Link to original tutorial here: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

    %matplotlib inline
    from graphviz import Digraph
    import torch
    from torch.autograd import Variable
    # Author: Sasank Chilamkurthy
    
    from __future__ import print_function, division
    
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torch.optim import lr_scheduler
    import numpy as np
    import torchvision
    from torchvision import datasets, models, transforms
    import matplotlib.pyplot as plt
    import time
    import os
    import copy
    
    plt.ion()
    data_transforms = {
        'train': transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
        'val': transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
    }
    
    
    data_dir = "images"
    image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                              data_transforms[x])
                      for x in ['train', 'val']}
    dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                                 shuffle=True, num_workers=4)
                  for x in ['train', 'val']}
    dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
    class_names = image_datasets['train'].classes
    
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    def imshow(inp, title=None):
        """Imshow for Tensor."""
        inp = inp.numpy().transpose((1, 2, 0))
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        inp = std * inp + mean
        inp = np.clip(inp, 0, 1)
        plt.imshow(inp)
        if title is not None:
            plt.title(title)
        plt.pause(0.001)  # pause a bit so that plots are updated
    
    
    # Get a batch of training data
    inputs, classes = next(iter(dataloaders['train']))
    
    # Make a grid from batch
    out = torchvision.utils.make_grid(inputs)
    
    imshow(out, title=[class_names[x] for x in classes])
    
    def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
        since = time.time()
    
        best_model_wts = copy.deepcopy(model.state_dict())
        best_acc = 0.0
    
        for epoch in range(num_epochs):
            print('Epoch {}/{}'.format(epoch, num_epochs - 1))
            print('-' * 10)
    
            # Each epoch has a training and validation phase
            for phase in ['train', 'val']:
                if phase == 'train':
                    scheduler.step()
                    model.train()  # Set model to training mode
                else:
                    model.eval()   # Set model to evaluate mode
    
                running_loss = 0.0
                running_corrects = 0
    
                # Iterate over data.
                for inputs, labels in dataloaders[phase]:
                    inputs = inputs.to(device)
                    labels = labels.to(device)
    
                    # zero the parameter gradients
                    optimizer.zero_grad()
    
                    # forward
                    # track history if only in train
                    with torch.set_grad_enabled(phase == 'train'):
                        outputs = model(inputs)
                        _, preds = torch.max(outputs, 1)
                        loss = criterion(outputs, labels)
    
                        # backward + optimize only if in training phase
                        if phase == 'train':
                            loss.backward()
                            optimizer.step()
    
                    # statistics
                    running_loss += loss.item() * inputs.size(0)
                    running_corrects += torch.sum(preds == labels.data)
    
                epoch_loss = running_loss / dataset_sizes[phase]
                epoch_acc = running_corrects.double() / dataset_sizes[phase]
    
                print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                    phase, epoch_loss, epoch_acc))
    
                # deep copy the model
                if phase == 'val' and epoch_acc > best_acc:
                    best_acc = epoch_acc
                    best_model_wts = copy.deepcopy(model.state_dict())
    
            print()
    
        time_elapsed = time.time() - since
        print('Training complete in {:.0f}m {:.0f}s'.format(
            time_elapsed // 60, time_elapsed % 60))
        print('Best val Acc: {:4f}'.format(best_acc))
    
        # load best model weights
        model.load_state_dict(best_model_wts)
        return model
    
    def visualize_model(model, num_images=6):
        was_training = model.training
        model.eval()
        images_so_far = 0
        fig = plt.figure()
    
        with torch.no_grad():
            for i, (inputs, labels) in enumerate(dataloaders['val']):
                inputs = inputs.to(device)
                labels = labels.to(device)
    
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
    
                for j in range(inputs.size()[0]):
                    images_so_far += 1
                    ax = plt.subplot(num_images//2, 2, images_so_far)
                    ax.axis('off')
                    ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                    imshow(inputs.cpu().data[j])
    
                    if images_so_far == num_images:
                        model.train(mode=was_training)
                        return
            model.train(mode=was_training)
    
    model_ft = models.resnet18(pretrained=True)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, 9)
    
    model_ft = model_ft.to(device)
    
    criterion = nn.CrossEntropyLoss()
    
    # Observe that all parameters are being optimized
    optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
    
    # Decay LR by a factor of 0.1 every 7 epochs
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
    
    model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                           num_epochs=25)
    
    visualize_model(model_ft)
    
  • talha06
    talha06 over 4 years
    What is the dataloaders there? When I use my test_loader which is an instance of torch.utils.data.DataLoader class, get the TypeError: 'DataLoader' object is not subscriptable.
  • donkey
    donkey about 4 years
    Why do you call t.long() and p.long()?
  • Mustafa Aydın
    Mustafa Aydın almost 4 years
    @donkey Because only integers, slices (`:`), ellipsis (`...`), None and long or byte Variables are valid indices
  • Gulzar
    Gulzar about 3 years
    For a slot (row, col) - does it think row and predicted col, or the opposite? Please clarify
  • Ozcan
    Ozcan over 2 years
    what is sns, and label2class?
  • Melike
    Melike over 2 years
    Beware of nans with the above print.
  • Sahar Millis
    Sahar Millis over 2 years
    seaborn, dictionary
  • Admin
    Admin about 2 years
    @talha06 they seem to create a dataloaders object and divide it to train and val set. Here is an example from one of the Pytorch tutorials: dataloaders = {dl: DataLoader(ds, batch_size, shuffle=True) for dl, ds in (("train", train_ds), ("val", val_ds))}