NumPy append vs concatenate
46,411
np.append
uses np.concatenate
:
def append(arr, values, axis=None):
arr = asanyarray(arr)
if axis is None:
if arr.ndim != 1:
arr = arr.ravel()
values = ravel(values)
axis = arr.ndim-1
return concatenate((arr, values), axis=axis)

Author by
Jana
Updated on March 11, 2020Comments
-
Jana about 3 years
What is the difference between NumPy
append
andconcatenate
?My observation is that
concatenate
is a bit faster andappend
flattens the array if axis is not specified.In [52]: print a [[1 2] [3 4] [5 6] [5 6] [1 2] [3 4] [5 6] [5 6] [1 2] [3 4] [5 6] [5 6] [5 6]] In [53]: print b [[1 2] [3 4] [5 6] [5 6] [1 2] [3 4] [5 6] [5 6] [5 6]] In [54]: timeit -n 10000 -r 5 np.concatenate((a, b)) 10000 loops, best of 5: 2.05 µs per loop In [55]: timeit -n 10000 -r 5 np.append(a, b, axis = 0) 10000 loops, best of 5: 2.41 µs per loop In [58]: np.concatenate((a, b)) Out[58]: array([[1, 2], [3, 4], [5, 6], [5, 6], [1, 2], [3, 4], [5, 6], [5, 6], [1, 2], [3, 4], [5, 6], [5, 6], [5, 6], [1, 2], [3, 4], [5, 6], [5, 6], [1, 2], [3, 4], [5, 6], [5, 6], [5, 6]]) In [59]: np.append(a, b, axis = 0) Out[59]: array([[1, 2], [3, 4], [5, 6], [5, 6], [1, 2], [3, 4], [5, 6], [5, 6], [1, 2], [3, 4], [5, 6], [5, 6], [5, 6], [1, 2], [3, 4], [5, 6], [5, 6], [1, 2], [3, 4], [5, 6], [5, 6], [5, 6]]) In [60]: np.append(a, b) Out[60]: array([1, 2, 3, 4, 5, 6, 5, 6, 1, 2, 3, 4, 5, 6, 5, 6, 1, 2, 3, 4, 5, 6, 5, 6, 5, 6, 1, 2, 3, 4, 5, 6, 5, 6, 1, 2, 3, 4, 5, 6, 5, 6, 5, 6])