NumPy version of "Exponential weighted moving average", equivalent to pandas.ewm().mean()

63,665

Solution 1

Updated 08/06/2019

PURE NUMPY, FAST & VECTORIZED SOLUTION FOR LARGE INPUTS

out parameter for in-place computation, dtype parameter, index order parameter

This function is equivalent to pandas' ewm(adjust=False).mean(), but much faster. ewm(adjust=True).mean() (the default for pandas) can produce different values at the start of the result. I am working to add the adjust functionality to this solution.

@Divakar's answer leads to floating point precision problems when the input is too large. This is because (1-alpha)**(n+1) -> 0 when n -> inf and alpha -> 1, leading to divide-by-zero's and NaN values popping up in the calculation.

Here is my fastest solution with no precision problems, nearly fully vectorized. It's gotten a little complicated but the performance is great, especially for really huge inputs. Without using in-place calculations (which is possible using the out parameter, saving memory allocation time): 3.62 seconds for 100M element input vector, 3.2ms for a 100K element input vector, and 293µs for a 5000 element input vector on a pretty old PC (results will vary with different alpha/row_size values).

# tested with python3 & numpy 1.15.2
import numpy as np

def ewma_vectorized_safe(data, alpha, row_size=None, dtype=None, order='C', out=None):
    """
    Reshapes data before calculating EWMA, then iterates once over the rows
    to calculate the offset without precision issues
    :param data: Input data, will be flattened.
    :param alpha: scalar float in range (0,1)
        The alpha parameter for the moving average.
    :param row_size: int, optional
        The row size to use in the computation. High row sizes need higher precision,
        low values will impact performance. The optimal value depends on the
        platform and the alpha being used. Higher alpha values require lower
        row size. Default depends on dtype.
    :param dtype: optional
        Data type used for calculations. Defaults to float64 unless
        data.dtype is float32, then it will use float32.
    :param order: {'C', 'F', 'A'}, optional
        Order to use when flattening the data. Defaults to 'C'.
    :param out: ndarray, or None, optional
        A location into which the result is stored. If provided, it must have
        the same shape as the desired output. If not provided or `None`,
        a freshly-allocated array is returned.
    :return: The flattened result.
    """
    data = np.array(data, copy=False)

    if dtype is None:
        if data.dtype == np.float32:
            dtype = np.float32
        else:
            dtype = np.float
    else:
        dtype = np.dtype(dtype)

    row_size = int(row_size) if row_size is not None 
               else get_max_row_size(alpha, dtype)

    if data.size <= row_size:
        # The normal function can handle this input, use that
        return ewma_vectorized(data, alpha, dtype=dtype, order=order, out=out)

    if data.ndim > 1:
        # flatten input
        data = np.reshape(data, -1, order=order)

    if out is None:
        out = np.empty_like(data, dtype=dtype)
    else:
        assert out.shape == data.shape
        assert out.dtype == dtype

    row_n = int(data.size // row_size)  # the number of rows to use
    trailing_n = int(data.size % row_size)  # the amount of data leftover
    first_offset = data[0]

    if trailing_n > 0:
        # set temporary results to slice view of out parameter
        out_main_view = np.reshape(out[:-trailing_n], (row_n, row_size))
        data_main_view = np.reshape(data[:-trailing_n], (row_n, row_size))
    else:
        out_main_view = out
        data_main_view = data

    # get all the scaled cumulative sums with 0 offset
    ewma_vectorized_2d(data_main_view, alpha, axis=1, offset=0, dtype=dtype,
                       order='C', out=out_main_view)

    scaling_factors = (1 - alpha) ** np.arange(1, row_size + 1)
    last_scaling_factor = scaling_factors[-1]

    # create offset array
    offsets = np.empty(out_main_view.shape[0], dtype=dtype)
    offsets[0] = first_offset
    # iteratively calculate offset for each row
    for i in range(1, out_main_view.shape[0]):
        offsets[i] = offsets[i - 1] * last_scaling_factor + out_main_view[i - 1, -1]

    # add the offsets to the result
    out_main_view += offsets[:, np.newaxis] * scaling_factors[np.newaxis, :]

    if trailing_n > 0:
        # process trailing data in the 2nd slice of the out parameter
        ewma_vectorized(data[-trailing_n:], alpha, offset=out_main_view[-1, -1],
                        dtype=dtype, order='C', out=out[-trailing_n:])
    return out

def get_max_row_size(alpha, dtype=float):
    assert 0. <= alpha < 1.
    # This will return the maximum row size possible on 
    # your platform for the given dtype. I can find no impact on accuracy
    # at this value on my machine.
    # Might not be the optimal value for speed, which is hard to predict
    # due to numpy's optimizations
    # Use np.finfo(dtype).eps if you  are worried about accuracy
    # and want to be extra safe.
    epsilon = np.finfo(dtype).tiny
    # If this produces an OverflowError, make epsilon larger
    return int(np.log(epsilon)/np.log(1-alpha)) + 1

The 1D ewma function:

def ewma_vectorized(data, alpha, offset=None, dtype=None, order='C', out=None):
    """
    Calculates the exponential moving average over a vector.
    Will fail for large inputs.
    :param data: Input data
    :param alpha: scalar float in range (0,1)
        The alpha parameter for the moving average.
    :param offset: optional
        The offset for the moving average, scalar. Defaults to data[0].
    :param dtype: optional
        Data type used for calculations. Defaults to float64 unless
        data.dtype is float32, then it will use float32.
    :param order: {'C', 'F', 'A'}, optional
        Order to use when flattening the data. Defaults to 'C'.
    :param out: ndarray, or None, optional
        A location into which the result is stored. If provided, it must have
        the same shape as the input. If not provided or `None`,
        a freshly-allocated array is returned.
    """
    data = np.array(data, copy=False)

    if dtype is None:
        if data.dtype == np.float32:
            dtype = np.float32
        else:
            dtype = np.float64
    else:
        dtype = np.dtype(dtype)

    if data.ndim > 1:
        # flatten input
        data = data.reshape(-1, order)

    if out is None:
        out = np.empty_like(data, dtype=dtype)
    else:
        assert out.shape == data.shape
        assert out.dtype == dtype

    if data.size < 1:
        # empty input, return empty array
        return out

    if offset is None:
        offset = data[0]

    alpha = np.array(alpha, copy=False).astype(dtype, copy=False)

    # scaling_factors -> 0 as len(data) gets large
    # this leads to divide-by-zeros below
    scaling_factors = np.power(1. - alpha, np.arange(data.size + 1, dtype=dtype),
                               dtype=dtype)
    # create cumulative sum array
    np.multiply(data, (alpha * scaling_factors[-2]) / scaling_factors[:-1],
                dtype=dtype, out=out)
    np.cumsum(out, dtype=dtype, out=out)

    # cumsums / scaling
    out /= scaling_factors[-2::-1]

    if offset != 0:
        offset = np.array(offset, copy=False).astype(dtype, copy=False)
        # add offsets
        out += offset * scaling_factors[1:]

    return out

The 2D ewma function:

def ewma_vectorized_2d(data, alpha, axis=None, offset=None, dtype=None, order='C', out=None):
    """
    Calculates the exponential moving average over a given axis.
    :param data: Input data, must be 1D or 2D array.
    :param alpha: scalar float in range (0,1)
        The alpha parameter for the moving average.
    :param axis: The axis to apply the moving average on.
        If axis==None, the data is flattened.
    :param offset: optional
        The offset for the moving average. Must be scalar or a
        vector with one element for each row of data. If set to None,
        defaults to the first value of each row.
    :param dtype: optional
        Data type used for calculations. Defaults to float64 unless
        data.dtype is float32, then it will use float32.
    :param order: {'C', 'F', 'A'}, optional
        Order to use when flattening the data. Ignored if axis is not None.
    :param out: ndarray, or None, optional
        A location into which the result is stored. If provided, it must have
        the same shape as the desired output. If not provided or `None`,
        a freshly-allocated array is returned.
    """
    data = np.array(data, copy=False)

    assert data.ndim <= 2

    if dtype is None:
        if data.dtype == np.float32:
            dtype = np.float32
        else:
            dtype = np.float64
    else:
        dtype = np.dtype(dtype)

    if out is None:
        out = np.empty_like(data, dtype=dtype)
    else:
        assert out.shape == data.shape
        assert out.dtype == dtype

    if data.size < 1:
        # empty input, return empty array
        return out

    if axis is None or data.ndim < 2:
        # use 1D version
        if isinstance(offset, np.ndarray):
            offset = offset[0]
        return ewma_vectorized(data, alpha, offset, dtype=dtype, order=order,
                               out=out)

    assert -data.ndim <= axis < data.ndim

    # create reshaped data views
    out_view = out
    if axis < 0:
        axis = data.ndim - int(axis)

    if axis == 0:
        # transpose data views so columns are treated as rows
        data = data.T
        out_view = out_view.T

    if offset is None:
        # use the first element of each row as the offset
        offset = np.copy(data[:, 0])
    elif np.size(offset) == 1:
        offset = np.reshape(offset, (1,))

    alpha = np.array(alpha, copy=False).astype(dtype, copy=False)

    # calculate the moving average
    row_size = data.shape[1]
    row_n = data.shape[0]
    scaling_factors = np.power(1. - alpha, np.arange(row_size + 1, dtype=dtype),
                               dtype=dtype)
    # create a scaled cumulative sum array
    np.multiply(
        data,
        np.multiply(alpha * scaling_factors[-2], np.ones((row_n, 1), dtype=dtype),
                    dtype=dtype)
        / scaling_factors[np.newaxis, :-1],
        dtype=dtype, out=out_view
    )
    np.cumsum(out_view, axis=1, dtype=dtype, out=out_view)
    out_view /= scaling_factors[np.newaxis, -2::-1]

    if not (np.size(offset) == 1 and offset == 0):
        offset = offset.astype(dtype, copy=False)
        # add the offsets to the scaled cumulative sums
        out_view += offset[:, np.newaxis] * scaling_factors[np.newaxis, 1:]

    return out

usage:

data_n = 100000000
data = ((0.5*np.random.randn(data_n)+0.5) % 1) * 100

span = 5000  # span >= 1
alpha = 2/(span+1)  # for pandas` span parameter

# com = 1000  # com >= 0
# alpha = 1/(1+com)  # for pandas` center-of-mass parameter

# halflife = 100  # halflife > 0
# alpha = 1 - np.exp(np.log(0.5)/halflife)  # for pandas` half-life parameter

result = ewma_vectorized_safe(data, alpha)

Just a tip

It is easy to calculate a 'window size' (technically exponential averages have infinite 'windows') for a given alpha, dependent on the contribution of the data in that window to the average. This is useful for example to chose how much of the start of the result to treat as unreliable due to border effects.

def window_size(alpha, sum_proportion):
    # Increases with increased sum_proportion and decreased alpha
    # solve (1-alpha)**window_size = (1-sum_proportion) for window_size        
    return int(np.log(1-sum_proportion) / np.log(1-alpha))

alpha = 0.02
sum_proportion = .99  # window covers 99% of contribution to the moving average
window = window_size(alpha, sum_proportion)  # = 227
sum_proportion = .75  # window covers 75% of contribution to the moving average
window = window_size(alpha, sum_proportion)  # = 68

The alpha = 2 / (window_size + 1.0) relation used in this thread (the 'span' option from pandas) is a very rough approximation of the inverse of the above function (with sum_proportion~=0.87). alpha = 1 - np.exp(np.log(1-sum_proportion)/window_size) is more accurate (the 'half-life' option from pandas equals this formula with sum_proportion=0.5).

In the following example, data represents a continuous noisy signal. cutoff_idx is the first position in result where at least 99% of the value is dependent on separate values in data (i.e. less than 1% depends on data[0]). The data up to cutoff_idx is excluded from the final results because it is too dependent on the first value in data, therefore possibly skewing the average.

result = ewma_vectorized_safe(data, alpha, chunk_size)
sum_proportion = .99
cutoff_idx = window_size(alpha, sum_proportion)
result = result[cutoff_idx:]

To illustrate the problem the above solve you can run this a few times, notice the often-appearing false start of the red line, which is skipped after cutoff_idx:

data_n = 100000
data = np.random.rand(data_n) * 100
window = 1000
sum_proportion = .99
alpha = 1 - np.exp(np.log(1-sum_proportion)/window)

result = ewma_vectorized_safe(data, alpha)

cutoff_idx = window_size(alpha, sum_proportion)
x = np.arange(start=0, stop=result.size)

import matplotlib.pyplot as plt
plt.plot(x[:cutoff_idx+1], result[:cutoff_idx+1], '-r',
         x[cutoff_idx:], result[cutoff_idx:], '-b')
plt.show()

note that cutoff_idx==window because alpha was set with the inverse of the window_size() function, with the same sum_proportion. This is similar to how pandas applies ewm(span=window, min_periods=window).

Solution 2

I think I have finally cracked it!

Here's a vectorized version of numpy_ewma function that's claimed to be producing the correct results from @RaduS's post -

def numpy_ewma_vectorized(data, window):

    alpha = 2 /(window + 1.0)
    alpha_rev = 1-alpha

    scale = 1/alpha_rev
    n = data.shape[0]

    r = np.arange(n)
    scale_arr = scale**r
    offset = data[0]*alpha_rev**(r+1)
    pw0 = alpha*alpha_rev**(n-1)

    mult = data*pw0*scale_arr
    cumsums = mult.cumsum()
    out = offset + cumsums*scale_arr[::-1]
    return out

Further boost

We can boost it further with some code re-use, like so -

def numpy_ewma_vectorized_v2(data, window):

    alpha = 2 /(window + 1.0)
    alpha_rev = 1-alpha
    n = data.shape[0]

    pows = alpha_rev**(np.arange(n+1))

    scale_arr = 1/pows[:-1]
    offset = data[0]*pows[1:]
    pw0 = alpha*alpha_rev**(n-1)

    mult = data*pw0*scale_arr
    cumsums = mult.cumsum()
    out = offset + cumsums*scale_arr[::-1]
    return out

Runtime test

Let's time these two against the same loopy function for a big dataset.

In [97]: data = np.random.randint(2,9,(5000))
    ...: window = 20
    ...:

In [98]: np.allclose(numpy_ewma(data, window), numpy_ewma_vectorized(data, window))
Out[98]: True

In [99]: np.allclose(numpy_ewma(data, window), numpy_ewma_vectorized_v2(data, window))
Out[99]: True

In [100]: %timeit numpy_ewma(data, window)
100 loops, best of 3: 6.03 ms per loop

In [101]: %timeit numpy_ewma_vectorized(data, window)
1000 loops, best of 3: 665 µs per loop

In [102]: %timeit numpy_ewma_vectorized_v2(data, window)
1000 loops, best of 3: 357 µs per loop

In [103]: 6030/357.0
Out[103]: 16.89075630252101

There is around a 17 times speedup!

Solution 3

Fastest EWMA 23x pandas

The question is strictly asking for a numpy solution, however, it seems that the OP was actually just after a pure numpy solution to speed up runtime.

I solved a similar problem but instead looked towards numba.jit which massively speeds the compute time

In [24]: a = np.random.random(10**7)
    ...: df = pd.Series(a)
In [25]: %timeit numpy_ewma(a, 10)               # /a/42915307/4013571
    ...: %timeit df.ewm(span=10).mean()          # pandas
    ...: %timeit numpy_ewma_vectorized_v2(a, 10) # best w/o numba: /a/42926270/4013571
    ...: %timeit _ewma(a, 10)                    # fastest accurate (below)
    ...: %timeit _ewma_infinite_hist(a, 10)      # fastest overall (below)
4.14 s ± 116 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
991 ms ± 52.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) 
396 ms ± 8.39 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
181 ms ± 1.01 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)   
39.6 ms ± 979 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Scaling down to smaller arrays of a = np.random.random(100) (results in the same order)

41.6 µs ± 491 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
945 ms ± 12 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
16 µs ± 93.5 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
1.66 µs ± 13.7 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
1.14 µs ± 5.57 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

It is also worth pointing out that my functions below are identically aligned to the pandas (see the examples in docstr), whereas a few of the answers here take various different approximations. For example,

In [57]: print(pd.DataFrame([1,2,3]).ewm(span=2).mean().values.ravel())
    ...: print(numpy_ewma_vectorized_v2(np.array([1,2,3]), 2))
    ...: print(numpy_ewma(np.array([1,2,3]), 2))
[1.         1.75       2.61538462]
[1.         1.66666667 2.55555556]
[1.         1.18181818 1.51239669]

The source code which I have documented for my own library

import numpy as np
from numba import jit
from numba import float64
from numba import int64


@jit((float64[:], int64), nopython=True, nogil=True)
def _ewma(arr_in, window):
    r"""Exponentialy weighted moving average specified by a decay ``window``
    to provide better adjustments for small windows via:

        y[t] = (x[t] + (1-a)*x[t-1] + (1-a)^2*x[t-2] + ... + (1-a)^n*x[t-n]) /
               (1 + (1-a) + (1-a)^2 + ... + (1-a)^n).

    Parameters
    ----------
    arr_in : np.ndarray, float64
        A single dimenisional numpy array
    window : int64
        The decay window, or 'span'

    Returns
    -------
    np.ndarray
        The EWMA vector, same length / shape as ``arr_in``

    Examples
    --------
    >>> import pandas as pd
    >>> a = np.arange(5, dtype=float)
    >>> exp = pd.DataFrame(a).ewm(span=10, adjust=True).mean()
    >>> np.array_equal(_ewma_infinite_hist(a, 10), exp.values.ravel())
    True
    """
    n = arr_in.shape[0]
    ewma = np.empty(n, dtype=float64)
    alpha = 2 / float(window + 1)
    w = 1
    ewma_old = arr_in[0]
    ewma[0] = ewma_old
    for i in range(1, n):
        w += (1-alpha)**i
        ewma_old = ewma_old*(1-alpha) + arr_in[i]
        ewma[i] = ewma_old / w
    return ewma


@jit((float64[:], int64), nopython=True, nogil=True)
def _ewma_infinite_hist(arr_in, window):
    r"""Exponentialy weighted moving average specified by a decay ``window``
    assuming infinite history via the recursive form:

        (2) (i)  y[0] = x[0]; and
            (ii) y[t] = a*x[t] + (1-a)*y[t-1] for t>0.

    This method is less accurate that ``_ewma`` but
    much faster:

        In [1]: import numpy as np, bars
           ...: arr = np.random.random(100000)
           ...: %timeit bars._ewma(arr, 10)
           ...: %timeit bars._ewma_infinite_hist(arr, 10)
        3.74 ms ± 60.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
        262 µs ± 1.54 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

    Parameters
    ----------
    arr_in : np.ndarray, float64
        A single dimenisional numpy array
    window : int64
        The decay window, or 'span'

    Returns
    -------
    np.ndarray
        The EWMA vector, same length / shape as ``arr_in``

    Examples
    --------
    >>> import pandas as pd
    >>> a = np.arange(5, dtype=float)
    >>> exp = pd.DataFrame(a).ewm(span=10, adjust=False).mean()
    >>> np.array_equal(_ewma_infinite_hist(a, 10), exp.values.ravel())
    True
    """
    n = arr_in.shape[0]
    ewma = np.empty(n, dtype=float64)
    alpha = 2 / float(window + 1)
    ewma[0] = arr_in[0]
    for i in range(1, n):
        ewma[i] = arr_in[i] * alpha + ewma[i-1] * (1 - alpha)
    return ewma

Solution 4

Here is an implementation using NumPy that is equivalent to using df.ewm(alpha=alpha).mean(). After reading the documentation, it is just a few matrix operations. The trick is constructing the right matrices.

It is worth noting that because we are creating float matrices, you can quickly eat through your memory if the input array is too large.

import pandas as pd
import numpy as np

def ewma(x, alpha):
    '''
    Returns the exponentially weighted moving average of x.

    Parameters:
    -----------
    x : array-like
    alpha : float {0 <= alpha <= 1}

    Returns:
    --------
    ewma: numpy array
          the exponentially weighted moving average
    '''
    # Coerce x to an array
    x = np.array(x)
    n = x.size

    # Create an initial weight matrix of (1-alpha), and a matrix of powers
    # to raise the weights by
    w0 = np.ones(shape=(n,n)) * (1-alpha)
    p = np.vstack([np.arange(i,i-n,-1) for i in range(n)])

    # Create the weight matrix
    w = np.tril(w0**p,0)

    # Calculate the ewma
    return np.dot(w, x[::np.newaxis]) / w.sum(axis=1)

Let's test its:

alpha = 0.55
x = np.random.randint(0,30,15)
df = pd.DataFrame(x, columns=['A'])
df.ewm(alpha=alpha).mean()

# returns:
#             A
# 0   13.000000
# 1   22.655172
# 2   20.443268
# 3   12.159796
# 4   14.871955
# 5   15.497575
# 6   20.743511
# 7   20.884818
# 8   24.250715
# 9   18.610901
# 10  17.174686
# 11  16.528564
# 12  17.337879
# 13   7.801912
# 14  12.310889

ewma(x=x, alpha=alpha)

# returns:
# array([ 13.        ,  22.65517241,  20.44326778,  12.1597964 ,
#        14.87195534,  15.4975749 ,  20.74351117,  20.88481763,
#        24.25071484,  18.61090129,  17.17468551,  16.52856393,
#        17.33787888,   7.80191235,  12.31088889])

Solution 5

A very simple solution that avoids numba and that is within a factor 2 of Alexander McFarlane's solution for large arrays is to use scipy's lfilter function (because an EWMA is a linear filter):

from scipy.signal import lfiltic, lfilter
# careful not to mix between scipy.signal and standard python signal 
# (https://docs.python.org/3/library/signal.html) if your code handles some processes

def ewma_linear_filter(array, window):
    alpha = 2 /(window + 1)
    b = [alpha]
    a = [1, alpha-1]
    zi = lfiltic(b, a, array[0:1], [0])
    return lfilter(b, a, array, zi=zi)[0]

Timings are as follows:

window = 100  # doesn't have any impact on run time
for n in [1000, 10_000, 100_000, 1_000_000, 10_000_000, 100_000_000]:
    data = np.random.normal(0, 1, n)
    print(f'n={n:,d}, window={window}')
    %timeit _ewma_infinite_hist(data, window)
    %timeit ewma_linear_filter(data, window)
    print()

n=1,000, window=100
5.01 µs ± 23.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
58.4 µs ± 1.05 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

n=10,000, window=100
39 µs ± 101 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
134 µs ± 387 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

n=100,000, window=100
373 µs ± 2.56 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
845 µs ± 2.27 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

n=1,000,000, window=100
5.35 ms ± 22 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
9.77 ms ± 78.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

n=10000000, window=100
53.7 ms ± 200 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
96.6 ms ± 2.28 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

n=10,0000,000, window=100
547 ms ± 5.02 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
963 ms ± 4.52 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Share:
63,665
RaduS
Author by

RaduS

Updated on July 09, 2022

Comments

  • RaduS
    RaduS almost 2 years

    How do I get the exponential weighted moving average in NumPy just like the following in pandas?

    import pandas as pd
    import pandas_datareader as pdr
    from datetime import datetime
    
    # Declare variables
    ibm = pdr.get_data_yahoo(symbols='IBM', start=datetime(2000, 1, 1), end=datetime(2012, 1, 1)).reset_index(drop=True)['Adj Close']
    windowSize = 20
    
    # Get PANDAS exponential weighted moving average
    ewm_pd = pd.DataFrame(ibm).ewm(span=windowSize, min_periods=windowSize).mean().as_matrix()
    
    print(ewm_pd)
    

    I tried the following with NumPy

    import numpy as np
    import pandas_datareader as pdr
    from datetime import datetime
    
    # From this post: http://stackoverflow.com/a/40085052/3293881 by @Divakar
    def strided_app(a, L, S): # Window len = L, Stride len/stepsize = S
        nrows = ((a.size - L) // S) + 1
        n = a.strides[0]
        return np.lib.stride_tricks.as_strided(a, shape=(nrows, L), strides=(S * n, n))
    
    def numpyEWMA(price, windowSize):
        weights = np.exp(np.linspace(-1., 0., windowSize))
        weights /= weights.sum()
    
        a2D = strided_app(price, windowSize, 1)
    
        returnArray = np.empty((price.shape[0]))
        returnArray.fill(np.nan)
        for index in (range(a2D.shape[0])):
            returnArray[index + windowSize-1] = np.convolve(weights, a2D[index])[windowSize - 1:-windowSize + 1]
        return np.reshape(returnArray, (-1, 1))
    
    # Declare variables
    ibm = pdr.get_data_yahoo(symbols='IBM', start=datetime(2000, 1, 1), end=datetime(2012, 1, 1)).reset_index(drop=True)['Adj Close']
    windowSize = 20
    
    # Get NumPy exponential weighted moving average
    ewma_np = numpyEWMA(ibm, windowSize)
    
    print(ewma_np)
    

    But the results are not similar as the ones in pandas.

    Is there maybe a better approach to calculate the exponential weighted moving average directly in NumPy and get the exact same result as the pandas.ewm().mean()?

    At 60,000 requests on pandas solution, I get about 230 seconds. I am sure that with a pure NumPy, this can be decreased significantly.

  • RaduS
    RaduS about 7 years
    One more thing you can change here is that instead of providing the alpha, you can write alpha=2/(winsowSize+1) at the beginning of the function and then provide the windowSize instead just like in pandas function
  • RaduS
    RaduS about 7 years
    is there any other way to calculate p = np.vstack([np.arange(i,i-n,-1) for i in range(n)]) by avoiding the np.vstack looping and the w = np.tril(w0**p,0)? This np.vstack looping and np.tril function seems to be making the entire function perform extremely slow when compared to pandas solution
  • RaduS
    RaduS about 7 years
    you can check out the solution i posted under, maybe it sparks some ideas. The solution gives the correct result based on the basic formula for the ewma the only problem is the looping
  • unsorted
    unsorted over 5 years
    This code doesn't work if the input vector is too large. For example, ewma( np.ones(10000), span=10) gives all nans. This occurs because at some point pows becomes all zeros and scale_arr becomes all nans.
  • mathguy
    mathguy almost 5 years
    Yeah, can confirm what @unsorted said. In my case, a 120k long data, and each element has value between 22000 and 34000, the result is all nans
  • Artem Alexandrov
    Artem Alexandrov over 3 years
    To be honest, I cannot understand why for large spans (for instance 5000) this function gives the different result in compare with pandas ewm(adjust=False).mean()
  • Artem Alexandrov
    Artem Alexandrov over 3 years
    If I would like to deal with float32 objects, I see that .ewm().mean() from pandas and numba-based ewm (your code) gives different results. Is it possible to fix this problem?
  • Artem Alexandrov
    Artem Alexandrov over 3 years
    I assume yes. For minimal working example I do the following: 1) create numpy array with dtype='float32', 2) create array with dtype=float. Then compare results of pandas .ewm().mean() and your numba-based ewm. For float64 the relative difference is zero, whereas for float32 it's about ~ 10^5.
  • Artem Alexandrov
    Artem Alexandrov over 3 years
    But I do no understand: in my research I deal with numpy arrays of type float32 and I naively assumed that numba-based ewm with float32 will be enough. However, this expectation was broken.
  • Alexander McFarlane
    Alexander McFarlane over 3 years
    I jut ran the minimal example of In [57] above. The results matched identically with float32. I think you have an error in your code.
  • Alexander McFarlane
    Alexander McFarlane over 3 years
    v nice - can you add an example to show the tie-out between the two? It might help for scan readers to explicitly see that you're matching the infinite history rather than pandas.ewm(span).mean() per the OP
  • Artem Alexandrov
    Artem Alexandrov over 3 years
    Ok, let me try one more time because it is really important for me and I hope that is also enough interesting for you to spend some time on this.I have 2 numba-based ewm functions: with float64 and float32. I create two arrays: np.arange(1, 10**7)*10**(-12) of type np.float32 and np.float64. Then, I compute the relative difference, diff = (pd_ewm - numba_ewm)/(pd_ewm) for this two arrays. In case of float64 I see that difference is zero, whereas in case of float32 I see that difference is about ~10**5. It seems strange for me.
  • Alexander McFarlane
    Alexander McFarlane over 3 years
    The component-wise max absolute difference is or the order 10^-13 for np.abs(_ewma(a, 10) - _ewma32(a.astype(np.float32), 10)).max() where a = np.arange(1, 10**7)*10**(-12)
  • Admin
    Admin about 3 years
    I seem to be unable to reproduce the original timing of my post (for reference, it was 86 ms for _ewma_infinite_hist and 92.6 ms for linear_filter). I have updated the post with updated timings for a range of parameters. This was run on an i7-10875H mobile CPU that was locked to 2.16 GHz.
  • The AI Architect
    The AI Architect about 3 years
    @RaduS Just stick the function in a class and compute the weight matrix once at initialization. That should work for cases where you'll be looking at multiple windows of the same size.
  • yogazining
    yogazining over 2 years
    awesome! thanks for sharing! can you write an exsample of 2D ewma function usage, really need that help ^_^
  • Jake Walden
    Jake Walden over 2 years
    @yogazining: you just have to give it your 2D matrix, the alpha parameter, and the axis you want averages over. e.g. like this: result = ewma_vectorized_2d(input, alpha, axis=1). result will be a 2d matrix where the values are the ewma averages over axis 1 for the input. all the parameters are described in more detail in the code comments. but be careful because you will run into precision issues for very large inputs (when the axis you want to use is larger than get_max_row_size(alpha)) so be sure to check for that. there are workarounds, let me know if you need it
  • Jake Walden
    Jake Walden over 2 years
    In relation to @yogazining's question: the ewma_vectorized_safe function is made for a 1D input. It is possible to make a ewma_vectorized_2d_safe function for 2D inputs which will perform all the precision checking and reshaping to use a 2D input without precision worries. If there are people in need of a function like that let me know, it'll take a bit of time to write and test it but i'll make the time for it it if there's enough demand for it
  • Jake Walden
    Jake Walden over 2 years
    @ArtemAlexandrov do you have a reproducible example where this happens?