Optional parameters for interfaces

54,990

Solution 1

You could consider the pre-optional-parameters alternative:

public interface IFoo
{
    void Bar(int i, int j);
}

public static class FooOptionalExtensions
{
    public static void Bar(this IFoo foo, int i)
    {
        foo.Bar(i, 0);
    }
}

If you don't like the look of a new language feature, you don't have to use it.

Solution 2

What is really strange is that the value you put for the optional parameter in the interface actually makes a difference. I suppose you have to question whether the value is an interface detail or an implementation detail. I would have said the latter but things behave like the former. The following code outputs 1 0 2 5 3 7 for example.

// Output:
// 1 0
// 2 5
// 3 7
namespace ScrapCSConsole
{
    using System;

    interface IMyTest
    {
        void MyTestMethod(int notOptional, int optional = 5);
    }

    interface IMyOtherTest
    {
        void MyTestMethod(int notOptional, int optional = 7);
    }

    class MyTest : IMyTest, IMyOtherTest
    {
        public void MyTestMethod(int notOptional, int optional = 0)
        {
            Console.WriteLine(string.Format("{0} {1}", notOptional, optional));
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
            MyTest myTest1 = new MyTest();
            myTest1.MyTestMethod(1);

            IMyTest myTest2 = myTest1;
            myTest2.MyTestMethod(2);

            IMyOtherTest myTest3 = myTest1;
            myTest3.MyTestMethod(3);
        }
    }
}

What is kind of interesting is that if your interface makes a parameter optional the class implementing it does not have to do the same:

// Optput:
// 2 5
namespace ScrapCSConsole
{
    using System;

    interface IMyTest
    {
        void MyTestMethod(int notOptional, int optional = 5);
    }

    class MyTest : IMyTest
    {
        public void MyTestMethod(int notOptional, int optional)
        {
            Console.WriteLine(string.Format("{0} {1}", notOptional, optional));
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
            MyTest myTest1 = new MyTest();
            // The following line won't compile as it does not pass a required
            // parameter.
            //myTest1.MyTestMethod(1);

            IMyTest myTest2 = myTest1;
            myTest2.MyTestMethod(2);
        }
    }
}

What seems to be a mistake however is that if you implement the interface explicitly the value you give in the class for the optional value is pointless. How in the following example could you use the value 9?

// Optput:
// 2 5
namespace ScrapCSConsole
{
    using System;

    interface IMyTest
    {
        void MyTestMethod(int notOptional, int optional = 5);
    }

    class MyTest : IMyTest
    {
        void IMyTest.MyTestMethod(int notOptional, int optional = 9)
        {
            Console.WriteLine(string.Format("{0} {1}", notOptional, optional));
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
            MyTest myTest1 = new MyTest();
            // The following line won't compile as MyTest method is not available
            // without first casting to IMyTest
            //myTest1.MyTestMethod(1);

            IMyTest myTest2 = new MyTest();            
            myTest2.MyTestMethod(2);
        }
    }
}

Eric Lippert wrote an interesting series on this exact topic: Optional argument corner cases

Solution 3

You don't have to make the parameter optional in the implementation. Your code will make somewhat more sense then:

 public interface IFoo
 {
      void Bar(int i, int j = 0);
 }

 public class Foo
 {
      void Bar(int i, int j) { // do stuff }
 }

This way, it's unambiguous what the default value is. In fact, I'm pretty sure the default value in the implementation will have no effect, since the interface provides a default for it.

Solution 4

What about something like this?

public interface IFoo
{
    void Bar(int i, int j);
}

public static class IFooExtensions 
{
    public static void Baz(this IFoo foo, int i, int j = 0) 
    {
        foo.Bar(i, j);
    }
}

public class Foo
{
    void Bar(int i, int j) { /* do stuff */ }
}

Solution 5

The thing to consider is what happens when Mocking frameworks are used, which work based on reflection of the interface. If optional parameters are defined on the interface, default value would be passed based on what is declared in the interface. One issue is that there is nothing stopping you from setting different optional values on the definition.

Share:
54,990
bryanjonker
Author by

bryanjonker

Programmer, gamer, married, no kids, multiple cats.

Updated on July 05, 2022

Comments

  • bryanjonker
    bryanjonker almost 2 years

    Using c# 4.0 -- building an interface and a class that implements the interface. I want to declare an optional parameter in the interface and have it be reflected in the class. So, I have the following:

     public interface IFoo
     {
          void Bar(int i, int j=0);
     }
    
     public class Foo
     {
          void Bar(int i, int j=0) { // do stuff }
     }
    

    This compiles, but it doesn't look right. The interface needs to have the optional parameters, because otherwise it doesn't reflect correctly in the interface method signature.

    Should I skip the optional parameter and just use a nullable type? Or will this work as intended with no side effects or consequences?

  • LittleBobbyTables - Au Revoir
    LittleBobbyTables - Au Revoir over 11 years
    @Iznogood - the edit you approved here is clearly not a valid edit: stackoverflow.com/review/suggested-edits/1041521. Please be more careful when reviewing edits.
  • Danny Bullis
    Danny Bullis over 7 years
    Feel free to provide additional explanation of how this works, or perhaps a link to what you're referring to as "pre-optional-paremeters alternative." Might help future users! :]
  • Martin Brown
    Martin Brown about 7 years
    Of course the really old way of doing this (pre C# 3 introducing extension methods) was to use method overloading in both the class and interface. If you have access to the class code overloading is probably better than an extension method anyway as it keeps the code in one place.
  • Martin Brown
    Martin Brown about 7 years
    The default value in the implementation will have an effect if your reference is typed with the class rather than interface.
  • keuleJ
    keuleJ about 3 years
    The default values are compiled into the call-site and that's why only the values from the type you call the method on are used.