Plot dendrogram using sklearn.AgglomerativeClustering

34,108

Solution 1

Here is a simple function for taking a hierarchical clustering model from sklearn and plotting it using the scipy dendrogram function. Seems like graphing functions are often not directly supported in sklearn. You can find an interesting discussion of that related to the pull request for this plot_dendrogram code snippet here.

I'd clarify that the use case you describe (defining number of clusters) is available in scipy: after you've performed the hierarchical clustering using scipy's linkage you can cut the hierarchy to whatever number of clusters you want using fcluster with number of clusters specified in the t argument and criterion='maxclust' argument.

Solution 2

Use the scipy implementation of agglomerative clustering instead. Here is an example.

from scipy.cluster.hierarchy import dendrogram, linkage

data = [[0., 0.], [0.1, -0.1], [1., 1.], [1.1, 1.1]]

Z = linkage(data)

dendrogram(Z)  

You can find documentation for linkage here and documentation for dendrogram here.

Solution 3

I came across the exact same problem some time ago. The way I managed to plot the damn dendogram was using the software package ete3. This package is able to flexibly plot trees with various options. The only difficulty was to convert sklearn's children_ output to the Newick Tree format that can be read and understood by ete3. Furthermore, I need to manually compute the dendrite's span because that information was not provided with the children_. Here is a snippet of the code I used. It computes the Newick tree and then shows the ete3 Tree datastructure. For more details on how to plot, take a look here

import numpy as np
from sklearn.cluster import AgglomerativeClustering
import ete3

def build_Newick_tree(children,n_leaves,X,leaf_labels,spanner):
    """
    build_Newick_tree(children,n_leaves,X,leaf_labels,spanner)

    Get a string representation (Newick tree) from the sklearn
    AgglomerativeClustering.fit output.

    Input:
        children: AgglomerativeClustering.children_
        n_leaves: AgglomerativeClustering.n_leaves_
        X: parameters supplied to AgglomerativeClustering.fit
        leaf_labels: The label of each parameter array in X
        spanner: Callable that computes the dendrite's span

    Output:
        ntree: A str with the Newick tree representation

    """
    return go_down_tree(children,n_leaves,X,leaf_labels,len(children)+n_leaves-1,spanner)[0]+';'

def go_down_tree(children,n_leaves,X,leaf_labels,nodename,spanner):
    """
    go_down_tree(children,n_leaves,X,leaf_labels,nodename,spanner)

    Iterative function that traverses the subtree that descends from
    nodename and returns the Newick representation of the subtree.

    Input:
        children: AgglomerativeClustering.children_
        n_leaves: AgglomerativeClustering.n_leaves_
        X: parameters supplied to AgglomerativeClustering.fit
        leaf_labels: The label of each parameter array in X
        nodename: An int that is the intermediate node name whos
            children are located in children[nodename-n_leaves].
        spanner: Callable that computes the dendrite's span

    Output:
        ntree: A str with the Newick tree representation

    """
    nodeindex = nodename-n_leaves
    if nodename<n_leaves:
        return leaf_labels[nodeindex],np.array([X[nodeindex]])
    else:
        node_children = children[nodeindex]
        branch0,branch0samples = go_down_tree(children,n_leaves,X,leaf_labels,node_children[0])
        branch1,branch1samples = go_down_tree(children,n_leaves,X,leaf_labels,node_children[1])
        node = np.vstack((branch0samples,branch1samples))
        branch0span = spanner(branch0samples)
        branch1span = spanner(branch1samples)
        nodespan = spanner(node)
        branch0distance = nodespan-branch0span
        branch1distance = nodespan-branch1span
        nodename = '({branch0}:{branch0distance},{branch1}:{branch1distance})'.format(branch0=branch0,branch0distance=branch0distance,branch1=branch1,branch1distance=branch1distance)
        return nodename,node

def get_cluster_spanner(aggClusterer):
    """
    spanner = get_cluster_spanner(aggClusterer)

    Input:
        aggClusterer: sklearn.cluster.AgglomerativeClustering instance

    Get a callable that computes a given cluster's span. To compute
    a cluster's span, call spanner(cluster)

    The cluster must be a 2D numpy array, where the axis=0 holds
    separate cluster members and the axis=1 holds the different
    variables.

    """
    if aggClusterer.linkage=='ward':
        if aggClusterer.affinity=='euclidean':
            spanner = lambda x:np.sum((x-aggClusterer.pooling_func(x,axis=0))**2)
    elif aggClusterer.linkage=='complete':
        if aggClusterer.affinity=='euclidean':
            spanner = lambda x:np.max(np.sum((x[:,None,:]-x[None,:,:])**2,axis=2))
        elif aggClusterer.affinity=='l1' or aggClusterer.affinity=='manhattan':
            spanner = lambda x:np.max(np.sum(np.abs(x[:,None,:]-x[None,:,:]),axis=2))
        elif aggClusterer.affinity=='l2':
            spanner = lambda x:np.max(np.sqrt(np.sum((x[:,None,:]-x[None,:,:])**2,axis=2)))
        elif aggClusterer.affinity=='cosine':
            spanner = lambda x:np.max(np.sum((x[:,None,:]*x[None,:,:]))/(np.sqrt(np.sum(x[:,None,:]*x[:,None,:],axis=2,keepdims=True))*np.sqrt(np.sum(x[None,:,:]*x[None,:,:],axis=2,keepdims=True))))
        else:
            raise AttributeError('Unknown affinity attribute value {0}.'.format(aggClusterer.affinity))
    elif aggClusterer.linkage=='average':
        if aggClusterer.affinity=='euclidean':
            spanner = lambda x:np.mean(np.sum((x[:,None,:]-x[None,:,:])**2,axis=2))
        elif aggClusterer.affinity=='l1' or aggClusterer.affinity=='manhattan':
            spanner = lambda x:np.mean(np.sum(np.abs(x[:,None,:]-x[None,:,:]),axis=2))
        elif aggClusterer.affinity=='l2':
            spanner = lambda x:np.mean(np.sqrt(np.sum((x[:,None,:]-x[None,:,:])**2,axis=2)))
        elif aggClusterer.affinity=='cosine':
            spanner = lambda x:np.mean(np.sum((x[:,None,:]*x[None,:,:]))/(np.sqrt(np.sum(x[:,None,:]*x[:,None,:],axis=2,keepdims=True))*np.sqrt(np.sum(x[None,:,:]*x[None,:,:],axis=2,keepdims=True))))
        else:
            raise AttributeError('Unknown affinity attribute value {0}.'.format(aggClusterer.affinity))
    else:
        raise AttributeError('Unknown linkage attribute value {0}.'.format(aggClusterer.linkage))
    return spanner

clusterer = AgglomerativeClustering(n_clusters=2,compute_full_tree=True) # You can set compute_full_tree to 'auto', but I left it this way to get the entire tree plotted
clusterer.fit(X) # X for whatever you want to fit
spanner = get_cluster_spanner(clusterer)
newick_tree = build_Newick_tree(clusterer.children_,clusterer.n_leaves_,X,leaf_labels,spanner) # leaf_labels is a list of labels for each entry in X
tree = ete3.Tree(newick_tree)
tree.show()

Solution 4

For those willing to step out of Python and use the robust D3 library, it's not super difficult to use the d3.cluster() (or, I guess, d3.tree()) APIs to achieve a nice, customizable result.

See the jsfiddle for a demo.

The children_ array luckily functions easily as a JS array, and the only intermediary step is to use d3.stratify() to turn it into a hierarchical representation. Specifically, we need each node to have an id and a parentId:

var N = 272;  // Your n_samples/corpus size.
var root = d3.stratify()
  .id((d,i) => i + N)
  .parentId((d, i) => {
    var parIndex = data.findIndex(e => e.includes(i + N));
    if (parIndex < 0) {
      return; // The root should have an undefined parentId.
    }
    return parIndex + N;
  })(data); // Your children_

You end up with at least O(n^2) behaviour here due to the findIndex line, but it probably doesn't matter until your n_samples becomes huge, in which case, you could precompute a more efficient index.

Beyond that, it's pretty much plug and chug use of d3.cluster(). See mbostock's canonical block or my JSFiddle.

N.B. For my use case, it sufficed merely to show non-leaf nodes; it's a bit trickier to visualise the samples/leaves, since these might not all be in the children_ array explicitly.

Share:
34,108

Related videos on Youtube

Shukhrat  Khannanov
Author by

Shukhrat Khannanov

Updated on July 09, 2022

Comments

  • Shukhrat  Khannanov
    Shukhrat Khannanov almost 2 years

    I'm trying to build a dendrogram using the children_ attribute provided by AgglomerativeClustering, but so far I'm out of luck. I can't use scipy.cluster since agglomerative clustering provided in scipy lacks some options that are important to me (such as the option to specify the amount of clusters). I would be really grateful for a any advice out there.

        import sklearn.cluster
        clstr = cluster.AgglomerativeClustering(n_clusters=2)
        clusterer.children_
    
    • Fabian de Pabian
      Fabian de Pabian about 9 years
      Please post a code sample to enlarge the chances of getting good answers
    • rawkintrevo
      rawkintrevo about 9 years
      Does this answer your question? link
  • conradlee
    conradlee almost 7 years
    This answer is useful because it points out an alternative way of creating and visualizing a hierarchical clustering via scipy, so I upvoted it. However this doesn't answer the original question, which was about how to visualize the dendrogram of a clustering created by scikit-learn. It would be great if you added a function that took scikit-learn's output and created a data structure like Z.
  • tozCSS
    tozCSS over 2 years
    @conradlee actually that's what the plot_dendrogram() function does here --all but the last line: scikit-learn.org/stable/auto_examples/cluster/… And the dendrogram function called in the last line is imported from scipy.cluster.hierarchy
  • conradlee
    conradlee over 2 years
    @tozCSS Thanks for pointing that out. The answer that's now highest-voted does indeed answer the question by linking to the plot_dendrogram snippet that's now part of the scikit-learn docs. I'm glad to see the docs have improved. I've now removed my upvote here.