How can I get millisecond and microsecond-resolution timestamps in Python?

26,123

For Windows: Here's a fully-functional module for both Linux (works with pre-Python 3.3 too) and Windows:

Functions and code samples.
Functions include:

  • micros()
  • millis()
  • delay()
  • delayMicroseconds()

Python code module (on GitHub as eRCaGuy_PyTime):

"""
GS_timing.py
-create some low-level Arduino-like millis() (milliseconds) and micros() 
 (microseconds) timing functions for Python 
By Gabriel Staples
http://www.ElectricRCAircraftGuy.com 
-click "Contact me" at the top of my website to find my email address 
Started: 11 July 2016 
Updated: 13 Aug 2016 

History (newest on top): 
20160813 - v0.2.0 created - added Linux compatibility, using ctypes, so that it's compatible with pre-Python 3.3 (for Python 3.3 or later just use the built-in time functions for Linux, shown here: https://docs.python.org/3/library/time.html)
-ex: time.clock_gettime(time.CLOCK_MONOTONIC_RAW)
20160711 - v0.1.0 created - functions work for Windows *only* (via the QPC timer)

References:
WINDOWS:
-personal (C++ code): GS_PCArduino.h
1) Acquiring high-resolution time stamps (Windows)
   -https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
2) QueryPerformanceCounter function (Windows)
   -https://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx
3) QueryPerformanceFrequency function (Windows)
   -https://msdn.microsoft.com/en-us/library/windows/desktop/ms644905(v=vs.85).aspx
4) LARGE_INTEGER union (Windows)
   -https://msdn.microsoft.com/en-us/library/windows/desktop/aa383713(v=vs.85).aspx

-*****https://stackoverflow.com/questions/4430227/python-on-win32-how-to-get-
absolute-timing-cpu-cycle-count
   
LINUX:
-https://stackoverflow.com/questions/1205722/how-do-i-get-monotonic-time-durations-in-python


"""

import ctypes, os 

#Constants:
VERSION = '0.2.0'

#-------------------------------------------------------------------
#FUNCTIONS:
#-------------------------------------------------------------------
#OS-specific low-level timing functions:
if (os.name=='nt'): #for Windows:
    def micros():
        "return a timestamp in microseconds (us)"
        tics = ctypes.c_int64()
        freq = ctypes.c_int64()

        #get ticks on the internal ~2MHz QPC clock
        ctypes.windll.Kernel32.QueryPerformanceCounter(ctypes.byref(tics)) 
        #get the actual freq. of the internal ~2MHz QPC clock
        ctypes.windll.Kernel32.QueryPerformanceFrequency(ctypes.byref(freq))  
        
        t_us = tics.value*1e6/freq.value
        return t_us
        
    def millis():
        "return a timestamp in milliseconds (ms)"
        tics = ctypes.c_int64()
        freq = ctypes.c_int64()

        #get ticks on the internal ~2MHz QPC clock
        ctypes.windll.Kernel32.QueryPerformanceCounter(ctypes.byref(tics)) 
        #get the actual freq. of the internal ~2MHz QPC clock 
        ctypes.windll.Kernel32.QueryPerformanceFrequency(ctypes.byref(freq)) 
        
        t_ms = tics.value*1e3/freq.value
        return t_ms

elif (os.name=='posix'): #for Linux:

    #Constants:
    CLOCK_MONOTONIC_RAW = 4 # see <linux/time.h> here: https://github.com/torvalds/linux/blob/master/include/uapi/linux/time.h
    
    #prepare ctype timespec structure of {long, long}
    class timespec(ctypes.Structure):
        _fields_ =\
        [
            ('tv_sec', ctypes.c_long),
            ('tv_nsec', ctypes.c_long)
        ]
        
    #Configure Python access to the clock_gettime C library, via ctypes:
    #Documentation:
    #-ctypes.CDLL: https://docs.python.org/3.2/library/ctypes.html
    #-librt.so.1 with clock_gettime: https://docs.oracle.com/cd/E36784_01/html/E36873/librt-3lib.html #-
    #-Linux clock_gettime(): http://linux.die.net/man/3/clock_gettime
    librt = ctypes.CDLL('librt.so.1', use_errno=True)
    clock_gettime = librt.clock_gettime
    #specify input arguments and types to the C clock_gettime() function
    # (int clock_ID, timespec* t)
    clock_gettime.argtypes = [ctypes.c_int, ctypes.POINTER(timespec)]

    def monotonic_time():
        "return a timestamp in seconds (sec)"
        t = timespec()
        #(Note that clock_gettime() returns 0 for success, or -1 for failure, in
        # which case errno is set appropriately)
        #-see here: http://linux.die.net/man/3/clock_gettime
        if clock_gettime(CLOCK_MONOTONIC_RAW , ctypes.pointer(t)) != 0:
            #if clock_gettime() returns an error
            errno_ = ctypes.get_errno()
            raise OSError(errno_, os.strerror(errno_))
        return t.tv_sec + t.tv_nsec*1e-9 #sec 
    
    def micros():
        "return a timestamp in microseconds (us)"
        return monotonic_time()*1e6 #us 
        
    def millis():
        "return a timestamp in milliseconds (ms)"
        return monotonic_time()*1e3 #ms 

#Other timing functions:
def delay(delay_ms):
    "delay for delay_ms milliseconds (ms)"
    t_start = millis()
    while (millis() - t_start < delay_ms):
      pass #do nothing 
    return

def delayMicroseconds(delay_us):
    "delay for delay_us microseconds (us)"
    t_start = micros()
    while (micros() - t_start < delay_us):
      pass #do nothing 
    return 
        
#-------------------------------------------------------------------
#EXAMPLES:
#-------------------------------------------------------------------
#Only executute this block of code if running this module directly,
#*not* if importing it
#-see here: http://effbot.org/pyfaq/tutor-what-is-if-name-main-for.htm
if __name__ == "__main__": #if running this module as a stand-alone program

    #print loop execution time 100 times, using micros()
    tStart = micros() #us
    for x in range(0, 100):
        tNow = micros() #us
        dt = tNow - tStart #us; delta time 
        tStart = tNow #us; update 
        print("dt(us) = " + str(dt))

    #print loop execution time 100 times, using millis()
    print("\n")
    tStart = millis() #ms
    for x in range(0, 100):
        tNow = millis() #ms
        dt = tNow - tStart #ms; delta time 
        tStart = tNow #ms; update 
        print("dt(ms) = " + str(dt))
        
    #print a counter once per second, for 5 seconds, using delay 
    print("\nstart")
    for i in range(1,6):
        delay(1000)
        print(i)

    #print a counter once per second, for 5 seconds, using delayMicroseconds
    print("\nstart")
    for i in range(1,6):
        delayMicroseconds(1000000)
        print(i)

If you know how to get the above millisecond and microsecond-resolution timestamps in Linux, please post, as that would be very helpful too.

This works for Linux too, including in pre-Python 3.3, since I'm using C functions via the ctypes module in order to read the time stamps.

(Note: code above originally posted here: http://www.electricrcaircraftguy.com/2016/07/arduino-like-millisecond-and-microsecond-timestamps-in-python.html)

Special thanks to @ArminRonacher for his brilliant pre-Python 3.3 Linux answer here: https://stackoverflow.com/a/1205762/4561887

Timestamp and clock references:

  1. Windows: QueryPerformanceCounter(): https://docs.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancecounter:

    Retrieves the current value of the performance counter, which is a high resolution (<1us) time stamp that can be used for time-interval measurements.

  2. Linux: clock_gettime(): https://man7.org/linux/man-pages/man3/clock_gettime.3.html (emphasis added):

    CLOCK_MONOTONIC

    A nonsettable system-wide clock that represents monotonic time since—as described by POSIX—"some unspecified point in the past". On Linux, that point corresponds to the number of seconds that the system has been running since it was booted.

    CLOCK_MONOTONIC_RAW (since Linux 2.6.28; Linux-specific)

    Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-based time that is not subject to NTP adjustments or the incremental adjustments performed by adjtime(3). This clock does not count time that the system is suspended.

  3. Note that both clocks on both systems do NOT provide "wall clock" type timestamps. Rather, they both provide high-resolution (sub-microsecond) timestamps which generally count time since boot. These timestamps are useful for precision timing of events, producing repeatable, periodic loops, and measuring small time intervals in code, with great resolution, precision, and accuracy.

Update: prior to Python 3.3, the built-in Python time library (https://docs.python.org/3.5/library/time.html) didn't have any explicitly high-resolution functions. Now, however it does provide other options, including some high-resolution functions.

My module above, however, provides high-resolution timestamps for Python code before Python 3.3, as well as after, and it does so on both Linux and Windows.

Here's an example of what I mean, showing that the time.sleep() function is NOT necessarily a high-resolution function. On my Windows machine, it's resolution is perhaps 8ms at best, whereas my module above has 0.5us resolution (16000 times better!) on the same machine.

Code demonstration:

import time
import GS_timing as timing

def delayMicroseconds(n):
    time.sleep(n / 1000000.)

def delayMillisecond(n):
    time.sleep(n / 1000.)

t_start = 0
t_end = 0

#using time.sleep
print('using time.sleep')
print('delayMicroseconds(1)')
for x in range(10):
    t_start = timing.micros() #us 
    delayMicroseconds(1)
    t_end = timing.micros() #us
    print('dt (us) = ' + str(t_end - t_start))
print('delayMicroseconds(2000)')
for x in range(10):
    t_start = timing.micros() #us 
    delayMicroseconds(2000)
    t_end = timing.micros() #us
    print('dt (us) = ' + str(t_end - t_start))
  
#using GS_timing
print('\nusing GS_timing')
print('timing.delayMicroseconds(1)')
for x in range(10):
    t_start = timing.micros() #us 
    timing.delayMicroseconds(1)
    t_end = timing.micros() #us
    print('dt (us) = ' + str(t_end - t_start))
print('timing.delayMicroseconds(2000)')
for x in range(10):
    t_start = timing.micros() #us 
    timing.delayMicroseconds(2000)
    t_end = timing.micros() #us
    print('dt (us) = ' + str(t_end - t_start))

SAMPLE RESULTS ON MY WINDOWS 8.1 MACHINE (notice how much worse time.sleep does):

using time.sleep
delayMicroseconds(1)
dt (us) = 2872.059814453125
dt (us) = 886.3939208984375
dt (us) = 770.4649658203125
dt (us) = 1138.7698974609375
dt (us) = 1426.027099609375
dt (us) = 734.557861328125
dt (us) = 10617.233642578125
dt (us) = 9594.90576171875
dt (us) = 9155.299560546875
dt (us) = 9520.526611328125
delayMicroseconds(2000)
dt (us) = 8799.3056640625
dt (us) = 9609.2685546875
dt (us) = 9679.5439453125
dt (us) = 9248.145263671875
dt (us) = 9389.721923828125
dt (us) = 9637.994262695312
dt (us) = 9616.450073242188
dt (us) = 9592.853881835938
dt (us) = 9465.639892578125
dt (us) = 7650.276611328125

using GS_timing
timing.delayMicroseconds(1)
dt (us) = 53.3477783203125
dt (us) = 36.93310546875
dt (us) = 36.9329833984375
dt (us) = 34.8812255859375
dt (us) = 35.3941650390625
dt (us) = 40.010986328125
dt (us) = 38.4720458984375
dt (us) = 56.425537109375
dt (us) = 35.9072265625
dt (us) = 36.420166015625
timing.delayMicroseconds(2000)
dt (us) = 2039.526611328125
dt (us) = 2046.195068359375
dt (us) = 2033.8841552734375
dt (us) = 2037.4747314453125
dt (us) = 2032.34521484375
dt (us) = 2086.2059326171875
dt (us) = 2035.4229736328125
dt (us) = 2051.32470703125
dt (us) = 2040.03955078125
dt (us) = 2027.215576171875

SAMPLE RESULTS ON MY RASPBERRY PI VERSION 1 B+ (notice that the results between using time.sleep and my module are basically identical...apparently the low-level functions in time are already accessing better-resolution timers here, since it's a Linux machine (running Raspbian)...BUT in my GS_timing module I am explicitly calling the CLOCK_MONOTONIC_RAW timer. Who knows what's being used otherwise):

using time.sleep
delayMicroseconds(1)
dt (us) = 1022.0
dt (us) = 417.0
dt (us) = 407.0
dt (us) = 450.0
dt (us) = 2078.0
dt (us) = 393.0
dt (us) = 1297.0
dt (us) = 878.0
dt (us) = 1135.0
dt (us) = 2896.0
delayMicroseconds(2000)
dt (us) = 2746.0
dt (us) = 2568.0
dt (us) = 2512.0
dt (us) = 2423.0
dt (us) = 2454.0
dt (us) = 2608.0
dt (us) = 2518.0
dt (us) = 2569.0
dt (us) = 2548.0
dt (us) = 2496.0

using GS_timing
timing.delayMicroseconds(1)
dt (us) = 572.0
dt (us) = 673.0
dt (us) = 1084.0
dt (us) = 561.0
dt (us) = 728.0
dt (us) = 576.0
dt (us) = 556.0
dt (us) = 584.0
dt (us) = 576.0
dt (us) = 578.0
timing.delayMicroseconds(2000)
dt (us) = 2741.0
dt (us) = 2466.0
dt (us) = 2522.0
dt (us) = 2810.0
dt (us) = 2589.0
dt (us) = 2681.0
dt (us) = 2546.0
dt (us) = 3090.0
dt (us) = 2600.0
dt (us) = 2400.0

Related:

  1. My 3 sets of timestamp functions (cross-linked to each other):
    1. For C timestamps, see my answer here: Get a timestamp in C in microseconds?
    2. For C++ high-resolution timestamps, see my answer here: Getting an accurate execution time in C++ (micro seconds)
    3. For Python high-resolution timestamps, see my answer here: How can I get millisecond and microsecond-resolution timestamps in Python?
  2. My C and C++ Linux high-resolution timing library with millis(), micros(), nanos(), sleep_ns(), sleep_until_ns, use_realtime_scheduler(), get_estimated_resolution(), etc.
    1. timinglib.h
    2. timinglib.c
  3. [my answer for C and C++, including microcontrollers (or any other system)] How to do timestamp-based, non-blocking, single-threaded cooperative multi-tasking
  4. [my answer for C and C++, including microcontrollers and Arduino (or any other system)] Full coulomb counter example demonstrating the above concept with timestamp-based, single-threaded, cooperative multi-tasking
  5. [my answer for C and C++ in Linux--could be easily adapted to Python using the ctypes module, as shown above] How to run a high-resolution, high-precision periodic loop in Linux easily, at any frequency (ex: up to 10 KHz~100 KHz) using a soft real-time scheduler and nanosecond delays
Share:
26,123
Gabriel Staples
Author by

Gabriel Staples

Working hard to make the internet more complete. Become my first &gt;&gt; GitHub Sponsor or Patreon &lt;&lt;! Senior Embedded Software Engineer Aeronautical Engineer Physics &amp; Controls Radio Control (RC) airplane enthusiast GitHub: https://github.com/ElectricRCAircraftGuy Website: http://www.ElectricRCAircraftGuy.com YouTube: https://www.youtube.com/user/panther3002/videos Ex: here's one of my favorite projects I've ever done!: "Quadrotor 2 - Physics-based Flight controller demo w/lead point navigation &amp; Arduino interface to RC Tx" Twitter: https://twitter.com/eRCaGuy I am big into RC aircraft and embedded programming. Very fun stuff. I'm an aeronautical engineer, but I also do a lot with electronics, electrical engineering, and computer science/programming (including a lot with C/C++ in Arduino and some lower-level AVR code). Here's my website, with many articles on the aforementioned topics, showing a tiny subset of my work: http://www.ElectricRCAircraftGuy.com

Updated on July 23, 2021

Comments

  • Gabriel Staples
    Gabriel Staples almost 3 years

    How do I get millisecond and microsecond-resolution timestamps in Python?
    I'd also like the Arduino-like delay() (which delays in milliseconds) and delayMicroseconds() functions.

    I read other answers before asking this question, but they rely on the time module, which prior to Python 3.3 did NOT have any type of guaranteed resolution whatsoever. Its resolution is all over the place. The most upvoted answer here quotes a Windows resolution (using their answer) of 16 ms, which is 32000 times worse than my answer provided here (0.5 us resolution). Again, I needed 1 ms and 1 us (or similar) resolutions, not 16000 us resolution.

    1. my own answer on how to do the same thing (get ms and us-resolution timestamps) in C++
  • Gabriel Staples
    Gabriel Staples almost 8 years
    time.sleep() has very poor resolution (8 ms on my Windows machine), whereas what I've done in my code below has very good resolution (0.5us on my Windows machine). Hence the premise of my whole quesiton: "millisecond and microsecond-resolution" timestamps. I just ran a comparison of my module below as compared to time.sleep, and the results are very different. I'll append it to my answer for you to see.
  • Gabriel Staples
    Gabriel Staples almost 8 years
    Done...see bottom of my answer. PS. Me figuring this timing stuff out has now consumed probably 12+ hrs of my time. It's been slow-going, as I'm new to Python.
  • Gabriel Staples
    Gabriel Staples almost 8 years
    I suspect tons of people (as you did) don't even recognize how what I'm doing is different or better, or why I'm not using the built-in time library. Well...it's not quite that simple. If you read the time documenation (docs.python.org/3.5/library/time.html) you'll also see that some major changes to the built-in Python library occurred at the release of Python 3.3, but my Raspberry Pi only has Python 3.2.3, and says it's the latest version, so some things I have to do custom to make sure I'm getting what I want. ex: CLOCK_MONOTONIC_RAW
  • alanjds
    alanjds over 7 years
    Btw, it crashes on Darwin for now.
  • Gabriel Staples
    Gabriel Staples over 7 years
    I suppose that doesn't surprise me; low-level timing relies heavily on the inner workings of the operating system, and Darwin is neither Linux nor Windows based. If you can get something similar, with similar resolution, working on Darwin too let me know and I can incorporate it into my code.
  • Smart Manoj
    Smart Manoj about 2 years
    > On my Windows machine, it's resolution is perhaps 8ms at best, whereas my module above has 0.5us resolution (16000 times better!) on the same machine. -- 8ms or .8ms in time module and 0.5us or 50 us in GS module?
  • Smart Manoj
    Smart Manoj about 2 years
    in windows it returns uptime not a timestamp
  • Gabriel Staples
    Gabriel Staples about 2 years
    @SmartManoj, that's expected and intended behavior, and it's the same on Linux too. See the "Timestamp and clock references" section I just added in the answer for details and an explanation. I stated "Note that both clocks on both systems do NOT provide "wall clock" type timestamps. Rather, they both provide high-resolution (sub-microsecond) timestamps which generally count time since boot. These timestamps are useful for precision timing of events, producing repeatable, periodic loops, and measuring small time intervals in code, with great resolution, precision, and accuracy."
  • Gabriel Staples
    Gabriel Staples about 2 years
    This type of timestamp is very-commonly used on bare-metal microcontrollers, for instance, with no operating system, to produce microsecond or nanosecond-resolution timestamps useful for measuring events and using timestamp-based, single-threaded, cooperative multi-tasking, such as I demonstrate here and here. On Arduino, for instance, the function call is micros() for microsecond timestamps or millis() for millisecond timestamps.
  • Smart Manoj
    Smart Manoj about 2 years
    They are actually timedelta but MS used wrong word. RIght?
  • Gabriel Staples
    Gabriel Staples about 2 years
    @SmartManoj, no, Microsoft used the correct word in calling it a "time stamp" (or "timestamp") even though it's a relative timestamp measured from boot time. There is probably some subjectivity in the wording, but I have never considered a timestamp to be limited to absolute timestamps from real-time clocks. A timestamp can have any epoch, which is the time point from which it is measured, whether that be the boot time, the last time you called a reset() func, the birth of Jesus Christ, or midnight UTC time on 1 January 1970. All are timestamps.
  • Smart Manoj
    Smart Manoj about 2 years
    en.wikipedia.org/wiki/Timestamp. Any docs for relative timestamp?